精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 的左焦点左顶点.

(Ⅰ)求椭圆的方程;

(Ⅱ)已知是椭圆上的两点是椭圆上位于直线两侧的动点.若,试问直线的斜率是否为定值?请说明理由.

【答案】(Ⅰ).(Ⅱ).

【解析】分析:(Ⅰ)根据条件依次求得,从而可得方程;

(Ⅱ)当∠APQ=BPQ,则PA、PB的斜率之和为0,设直线PA的斜率为k,则PB的斜率为-k,PA的直线方程为y-3=k(x-2),PB的直线方程为y-9=-k(x-2),由此利用韦达定理结合已知条件能求出AB的斜率为定值.

详解:(Ⅰ)由题意可得,,得

所以椭圆的方程为.

(Ⅱ)当时,的斜率之和为,设直线的斜率为,则直线的斜率为,设 的方程为.

联立

.

所以

同理

所以.

所以.

所以的斜率为定值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在某次高中学科竞赛中,4000名考生的参赛成绩统计如图所示,60分以下视为不及格,若同一组中数据用该组区间中点作代表,则下列说法中有误的是(

A. 成绩在分的考生人数最多

B. 不及格的考生人数为1000人

C. 考生竞赛成绩的平均分约70.5分

D. 考生竞赛成绩的中位数为75分

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若曲线在点处的切线与圆相切,求的值;

(2)若函数上存在极值,求的取值范围;

(3)若函数有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】兰天购物广场某营销部门随机抽查了100名市民在2018年国庆长假期间购物广场的消费金额,所得数据如表,已知消费金额不超过3千元与超过3千元的人数比恰为.

消费金额(单位:千元)

人数

频率

8

0.08

12

0.12

8

0.08

7

0.07

合计

100

1.00

(1)试确定的值,并补全频率分布直方图(如图);

(2)用分层抽样的方法从消费金额在的三个群体中抽取7人进行问卷调查,则各小组应抽取几人?若从这7人中随机选取2人,则此2人来自同一群体的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司在迎新年晚会上举行抽奖活动,有甲,乙两个抽奖方案供员工选择. 方案甲:员工最多有两次抽奖机会,每次抽奖的中奖率均为 ,第一次抽奖,若未中奖,则抽奖结束,若中奖,则通过抛一枚质地均匀的硬币,决定是否继续进行第二次抽奖,规定:若抛出硬币,反面朝上,员工则获得500元奖金,不进行第二次抽奖;若正面朝上,员工则须进行第二次抽奖,且在第二次抽奖中,若中奖,则获得1000元;若未中奖,则所获得奖金为0元.
方案乙:员工连续三次抽奖,每次中奖率均为 ,每次中奖均可获得奖金400元.
(Ⅰ)求某员工选择方案甲进行抽奖所获奖金X(元)的分布列;
(Ⅱ)试比较某员工选择方案乙与选择方案甲进行抽奖,哪个方案更划算?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (x>0,e为自然对数的底数),f'(x)是f(x)的导函数. (Ⅰ)当a=2时,求证f(x)>1;
(Ⅱ)是否存在正整数a,使得f'(x)≥x2lnx对一切x>0恒成立?若存在,求出a的最大值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若如图所示的程序框图输出的S是126,则n条件为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面为矩形,测棱底面,点的中点,作


Ⅰ)求证:平面平面

Ⅱ)求证:平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C的顶点为原点,焦点F与圆的圆心重合.

(1)求抛物线C的标准方程;

(2)设定点,当P点在C上何处时,的值最小,并求最小值及点P的坐标;

(3)若弦过焦点,求证:为定值.

查看答案和解析>>

同步练习册答案