【题目】在某次高中学科竞赛中,4000名考生的参赛成绩统计如图所示,60分以下视为不及格,若同一组中数据用该组区间中点作代表,则下列说法中有误的是( )
![]()
A. 成绩在
分的考生人数最多
B. 不及格的考生人数为1000人
C. 考生竞赛成绩的平均分约70.5分
D. 考生竞赛成绩的中位数为75分
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,以坐标原点为极点,
轴的正半轴为极轴建立极坐标系.已知点
的直角坐标为
,曲线
的极坐标方程为
,直线
过点
且与曲线
相交于
,
两点.
(1)求曲线
的直角坐标方程;
(2)若
,求直线
的直角坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】小陈同学进行三次定点投篮测试,已知第一次投篮命中的概率为
,第二次投篮命中的概率为
,前两次投篮是否命中相互之间没有影响.第三次投篮受到前两次结果的影响,如果前两次投篮至少命中一次,则第三次投篮命中的概率为
,否则为
.
(1)求小陈同学三次投篮至少命中一次的概率;
(2)记小陈同学三次投篮命中的次数为随机变量
,求
的概率分布及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】双曲线
的虚轴长为
,两条渐近线方程为
.
(1)求双曲线
的方程;
(2)双曲线
上有两个点
,直线
和
的斜率之积为
,判别
是否为定值,;
(3)经过点
的直线
且与双曲线
有两个交点
,直线
的倾斜角是
,是否存在直线
(其中
)使得
恒成立?(其中
分别是点
到
的距离)若存在,求出
的值,若不存在,请说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有两个不透明的箱子,每个箱子都装有4个完全相同的小球,球上分别标有数字1,2,3,4.
(1)甲从其中一个箱子中摸出一个球,乙从另一个箱子摸出一个球,谁摸出的球上标的数字大谁就获胜(若数字相同则为平局),求甲获胜的概率;
(2)摸球方法与(1)同,若规定:两人摸到的球上所标数字相同甲获胜,所标数字不相同则乙获胜,这样规定公平吗?请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某学校高三年级共800名男生中随机抽取50人测量身高.据测量,被测学生身高全部介于
到
之间,将测量结果按如下方式分成八组:第一组
;第二组
;…;第八组
.如图是按上述分组方法得到的频率分布直方图的一部分.已知第一组与第八组人数相同,第六组、第七组、第八组人数依次构成等差数列.
![]()
(1)估计这所学校高三年级全体男生身高在
以上(含
)的人数;
(2)求第六组、第七组的频率并补充完整频率分布直方图;
(3)若从身高属于第六组和第八组的所有男生中随机抽取两人,记他们的身高分别为
,求满足“
”的事件的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列
的通项公式为
(
,
),数列
定义如下:对于正整数
,
是使得不等式
成立的所有
中的最小值.
(1)若
,
,求
;
(2)若
,
,求数列
的前
项和公式;
(3)是否存在
和
,使得
?如果存在,求
和
的取值范围;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左焦点
左顶点
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)已知
,
是椭圆上的两点,
是椭圆上位于直线
两侧的动点.若
,试问直线
的斜率是否为定值?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com