精英家教网 > 高中数学 > 题目详情
函数是定义在R上的可导函数,则下列说法不正确的是(  )
A.若函数在时取得极值,则
B.若,则函数在处取得极值
C.若在定义域内恒有,则是常数函数
D.函数处的导数是一个常数
B.

试题分析:对于B,可以构造函数,则,而并不是的极值点,而A,C,D均正确,∴选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数(是常数)在处的切线方程为,且.
(1)求常数的值;
(2)若函数()在区间内不是单调函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数为常数.
(1)若函数处的切线与轴平行,求的值;
(2)当时,试比较的大小;
(3)若函数有两个零点,试证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
(1)f(x)在x=0处是否连续?说明理由;
(2)讨论f(x)在闭区间[-1,0]和[0,1]上的连续性. 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,若,则的大小关系为(   )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数上为增函数,
(1)求的值;
(2)当时,求函数的单调区间和极值;
(3)若在上至少存在一个,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求下列函数的导数:
(1)
(2)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax2-(a+2)x+lnx.
(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)当a>0时,若f(x)在区间[1,e]上的最小值为-2,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

曲线在点处的切线斜率为      

查看答案和解析>>

同步练习册答案