已知点P是抛物线y2=2x上的动点,F是抛物线的焦点,若点A(3,2),则|PA|+|PF|的最小值是________.

分析:作PM⊥准线l,M为垂足,由抛物线的定义可得|PA|+|PF|=|PA|+|PM|,故当P,A,M三点共线时,|PA|+|PM|最小为|AM|.
解答:

解:由题意可得F(

,0 ),准线方程为 x=-

,作PM⊥准线l,M为垂足,
由抛物线的定义可得|PA|+|PF|=|PA|+|PM|,
故当P,A,M三点共线时,|PA|+|PM|最小为|AM|=3-(-

)=

,
所以:|PA|+|PF|的最小值是

故答案为:

点评:本题重点考查抛物线的定义,判断当P,A,M三点共线时,|PA|+|PM|最小为|AM|,是解题的关键.