| A. | n+3 | B. | 2n+1 | C. | n2-3n+7 | D. | $\frac{{{n^2}+n+2}}{2}$ |
分析 由题意,平面内n条直线,任何两条不平行,任何三条不过同一点时,将平面分成的区域最多,确定f(n)-f(n-1)=n,累加,即可求得f(n)的表达式.
解答 解:由题意,平面内n条直线,任何两条不平行,任何三条不过同一点时,将平面分成的区域最多
设前k条直线把平面分成了f(k)部分,第k+1条直线与原有的k条直线有k个交点,这k个交点将第k+1条直线分为k+1段,这k+1段将平面上原来的f(k)部分的每一部分分成了2个部分,共2(k+1)部分,相当于增加了k+1个部分,
∴第k+1条直线将平面分成了f(k+1)部分,则f(k+1)-f(k)=k+1,
令k=1,2,3,….n得 f(2)-f(1)=2,f(3)-f(2)=3,…,f(n)-f(n-1)=n,
把这n-1个等式累加,得 f(n)-f(1)=2+3+…+n=$\frac{(n+2)(n-1)}{2}$,
∴f(n)=2+$\frac{(n+2)(n-1)}{2}$=$\frac{{n}^{2}+n+2}{2}$,
故选:D.
点评 本题考查合情推理,考查了分析问题和解决问题的能力,解题的关键是找出第k项和第k+1项之间的关系,再利用累加法求出f(n)的关系式.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1秒末 | B. | 2秒末 | C. | 3秒末 | D. | 4秒末 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com