精英家教网 > 高中数学 > 题目详情
9.函数y=sinx和y=cosx均为减函数的区间是[2kπ+$\frac{π}{2}$,2kπ+π](k∈Z).

分析 分别求出函数y=sinx和y=cosx为减函数的区间,取公共部分可得.

解答 解:y=sinx是减函数的区间是[2kπ+$\frac{π}{2}$,2kπ+$\frac{3}{2}$π];
使y=cosx是减函数的区间是[2kπ,2kπ+π],
∴同时成立的区间为[2kπ+$\frac{π}{2}$,2kπ+π](k∈Z).
故答案为[2kπ+$\frac{π}{2}$,2kπ+π](k∈Z).

点评 本题考查正余弦函数的单调性,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知cos($α+\frac{π}{6}$)=$\frac{\sqrt{3}}{3}$,则sin(2$α-\frac{π}{6}$)的值为(  )
A.$\frac{2\sqrt{2}}{3}$B.$\frac{1}{3}$C.-$\frac{1}{3}$D.-$\frac{2\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某高校组织自主招生考试,其有2 000名学生报名参加了笔试,成绩均介于195分到275分之间,从中随机抽取50名同学的成绩进行统计,将统计结果按如下方式分成八组:第一组[195,205),第二组[205,215),…,第八组[265,275).如图是按上述分组方法得到的频率分布直方图.
(1)从这2 000名学生中,任取1人,求这个人的分数在255~265之间的概率约是多少?
(2)求这2 000名学生的平均分数;
(3)若计划按成绩取1 000名学生进入面试环节,试估计应将分数线定为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.一个项数为偶数的等差数列,其奇数项之和为24,偶数项之和为30,最后一项比第一项大$\frac{21}{2}$,则最后一项为
12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.大学生村官王善良落实政府“精准扶贫”精神,帮助贫困户张三用9万元购进一部节能环保汽车,用于出租.假设第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加2万元,该车每年的运营收入均为11万元.若该车使用了n(n∈N*)年后,年平均盈利额达到最大值,则n等于(注:年平盈利额=(总收入-总成本)×$\frac{1}{n}$)(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=log2(1-2x)+$\frac{1}{x+1}$$+\sqrt{1-x}$的定义域为(  )
A.(0,$\frac{1}{2}$)B.(-∞,$\frac{1}{2}$)C.(-1,0)∪(0,$\frac{1}{2}$)D.(-∞,-1)∪(-1,$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知双曲线的方程为x2-$\frac{y^2}{3}$=1,直线m的方程为x=$\frac{1}{2}$,过双曲线的右焦点F(2,0)的直线l与双曲线右支相交于P,Q,以PQ为直径的圆与直线m相交于M,N,记劣弧MN的长度为n,则$\frac{n}{{|{PQ}|}}$的值为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$
C.$\frac{π}{2}$D.与直线l的位置有关

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知全集Y={x|x≤4},集合A=(-2,3),集合B=(-3,2)求
(1)(∁UA)∪B
(2)A∩(∁UB)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.抛物线C:y2=-8x上一点(m,2)到其焦点的距离为(  )
A.2B.$\frac{5}{2}$C.3D.$\frac{5}{3}$

查看答案和解析>>

同步练习册答案