分析 (1)利用同角三角函数基本关系式化简求解即可.
(2)利用两角和与差的三角函数化简求解即可.
解答 解:(1)tanα=4$\sqrt{3}$,且0<α<$\frac{π}{2}$,
可得cosα=$\sqrt{\frac{1}{1+ta{n}^{2}α}}$=$\sqrt{\frac{1}{1+48}}$=$\frac{1}{7}$,
(2)由(1)可得sinα=$\sqrt{1-co{s}^{2}α}$=$\frac{4\sqrt{3}}{7}$,
cos(β-α)=$\frac{13}{14}$,且0<β<α<$\frac{π}{2}$,sin(β-α)=-$\sqrt{1-(\frac{13}{14})^{2}}$=-$\frac{3\sqrt{3}}{14}$;
cosβ=cos(β-α+α)=cos(β-α)cosα-sinαsin(β-α)=$\frac{13}{14}$×$\frac{1}{7}$-$\frac{4\sqrt{3}}{7}×(-\frac{3\sqrt{3}}{14})$=$\frac{1}{2}$,
∴$β=\frac{π}{3}$.
点评 本题考查两角和与差的三角函数,同角三角函数基本关系式的应用,考查计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2π | B. | π | C. | $\frac{π}{2}$ | D. | $\frac{π}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 向右平移$\frac{π}{4}$个单位 | B. | 向左平移$\frac{π}{4}$个单位 | ||
| C. | 向右平移$\frac{π}{12}$个单位 | D. | 向左平移$\frac{π}{12}$个单位 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com