精英家教网 > 高中数学 > 题目详情
16.焦点在x轴上的椭圆$\frac{x^2}{m}$+$\frac{y^2}{4}$=1的焦距等于2,则m=(  )
A.8B.6C.5D.3

分析 求出椭圆的焦距,列出方程求解即可.

解答 解:焦点在x轴上的椭圆$\frac{x^2}{m}$+$\frac{y^2}{4}$=1的焦距等于2,
可得$2\sqrt{m-4}=2$,解得m=5.
故选:C.

点评 本题考查椭圆的简单性质的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.(1)已知向量$\overrightarrow{a}$=(2,-3),$\overrightarrow{MN}$与$\overrightarrow a$垂直,且|${\overrightarrow{MN}}$|=3$\sqrt{13}$,若点M的坐标为(-3,2),求$\overrightarrow{ON}$(其中O为坐标原点);
(2)设O为△ABC的外心(三角形外接圆的圆心),若$\overrightarrow{AO}$•$\overrightarrow{BC}$=$\frac{1}{2}$|${\overrightarrow{AB}}$|2,求$\frac{{\left|{\overrightarrow{AC}}\right|}}{{\left|{\overrightarrow{AB}}\right|}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知集合M={x|x2-3x-28≤0},N={x|x2-x-2>0},则M∩N={x|-4≤x<-1或2<x≤7},.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.若不等式ax2+(a-5)x-2>0的解集为{x|-2<x<-$\frac{1}{4}$}
(1)解不等式2x2+(2-a)x-a>0
(2)求b为的范围,使-ax2+bx+3≥0 的解集为R.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=(alnx+$\frac{b}{x})$ex,曲线y=f(x)在点P(1,f(1))处的切线方程为y=e(x-1)+2.
(Ⅰ)求a,b;
(Ⅱ)设g(x)=xe-x-$\frac{2}{e}({x>0})$,求g(x)的最大值;
(Ⅲ)证明函数f(x)的图象与直线y=1没有公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.命题“?x0∈R,log2x0≤0”的否定为?x∈R,均有log2x>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若{an}是等差数列,首项a1>0,a5+a6>0,a5a6<0,则使前n项和Sn>0成立的最大自然数n的值是(  )
A.6B.7C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知tanα=4$\sqrt{3}$,cos(β-α)=$\frac{13}{14}$,且0<β<α<$\frac{π}{2}$
(1)求cosα的值;
(2)求β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.圆x2+y2=16上的点到直线x-y=2的距离的最大值是(  )
A.4-$\sqrt{2}$B.16-$\sqrt{2}$C.16+$\sqrt{2}$D.4+$\sqrt{2}$

查看答案和解析>>

同步练习册答案