精英家教网 > 高中数学 > 题目详情
如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,点O是对角线AC与BD的交点,M是PD的中点.
(1)求证:OM∥平面PAB;  
(2)平面PBD⊥平面PAC.
考点:平面与平面垂直的判定,直线与平面平行的判定
专题:综合题,空间位置关系与距离
分析:(1)利用三角形中位线的性质,证明线线平行,从而可得线面平行;
(2)先证明BD⊥平面PAC,即可证明平面PBD⊥平面PAC.
解答: 证明:(1)∵在△PBD中,O、M分别是BD、PD的中点,
∴OM是△PBD的中位线,∴OM∥PB,
∵OM?平面PBD,PB?平面PBD,
∴OM∥平面PAB;
(2)∵底面ABCD是菱形,∴BD⊥AC,
∵PA⊥平面ABCD,BD?平面ABCD,∴BD⊥PA.
∵AC?平面PAC,PA?平面PAC,AC∩PA=A,∴BD⊥平面PAC,
∵BD?平面PBD,
∴平面PBD⊥平面PAC.
点评:本小题主要考查空间线面关系等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

判断直线4x-3y+6=0与圆(x-4)2+(y+1)2=25的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

证明三角恒等式:
tanasina
tana-sina
=
tana+sina
tanasina

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体中,A、B为正方体的两个顶点,M、N、P为所在棱的中点,则异面直线MP、AB在正方体的正视图中的位置关系是(  )
A、相交B、平行C、异面D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=loga|bx|(其中a>0,b>0,且a≠1)函数的图象经过两点(1,0),(4,2).
(1)求实数a,b的值,并写出函数的解析式;
(2)判断f(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B1C1中,侧棱AA⊥底面ABC,且侧棱和底面边长均为2,D是BC的中点
(1)求证:AD⊥平面BB1CC1
(2)求证:A1B∥平面ADC1
(3)求三棱锥C1-ADB1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-4,0)和B(2,2)M是椭圆
x2
25
+
y2
9
=1上一动点,则|MA|+|MB|的最大值(  )
A、10+2
2
B、
2
+5
C、9+
2
D、9+2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y∈R+,且(x+1)(y+1)=4,则2x+y的最小值为(  )
A、3
B、4
C、2
2
-1
D、4
2
-3

查看答案和解析>>

科目:高中数学 来源: 题型:

写出-720°到720°之间与-1050°终边相同的角的集合
 

查看答案和解析>>

同步练习册答案