精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
如图, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,,AA1=4,点D是AB的中点.
(Ⅰ)求证:AC⊥BC1
(Ⅱ)求二面角的余弦值.

(1)  略
(2)  
(Ⅰ)证明:直三棱柱ABC-A1B1C1,底面三边长AC=3,BC=4,AB=5,



∴ AC⊥BC,                                           …………………2分
又 AC⊥,且
∴ AC⊥平面BCC1,又平面BCC1        ……………………………………4分
∴ AC⊥BC           ………………………………………………………………5分
(Ⅱ)解法一:取中点,过,连接        …………6分
中点,
 ,又平面
平面
平面平面

 又
平面平面        ………8分
  又
是二面角的平面角     ……………………………………10分
AC=3,BC=4,AA1=4,
∴在中,
      …………………………………………11分
∴二面角的正切值为 …………………………………………12分
解法二:以分别为轴建立如图所示空间直角坐标系…………6分
AC=3,BC=4,AA1=4,
 


平面的法向量,    …………………8分
设平面的法向量
的夹角(或其补角)的大小就是二面角的大小  …………9分
则由  令,则                                         ………………10分
   ……………11分
∵二面角是锐二面角
∴二面角的余弦值为   ………………………… 12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,四边形都是边长为的正方形,点E是的中点,
(1) 求证:平面BDE;
(2) 求证:平面⊥平面BDE
(3) 求平面BDE与平面ABCD所成锐二面角的正切值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图:在正方体ABCDA1B1C1D1中,MNP分别为所在边的中点,O为面对角线A1C1的中点.
(1) 求证:面MNP∥面A1C1B;(2) 求证:MO⊥面A1C1.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


如图,在三棱柱中, ,,点D是上一点,且

(1)求证:平面平面
(2)求证:平面;
(3)求二面角的余弦值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
如图,在三棱柱中,侧面均为正方形,∠,点是棱的中点.

(Ⅰ)求证:⊥平面
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知直角梯形中(如图1),的中点,
沿折起,使面(如图2),点在线段上,.
(1)求异面直线所成角的余弦值;
(2)求二面角的余弦值;
(3)在四棱锥的棱上是否存在一点,使得平面,若存在,求出点的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,棱锥P—ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=.

(Ⅰ)求证:BD⊥平面PAC
(Ⅱ)求二面角PCDB的大小;
(Ⅲ)求点C到平面PBD的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在长方体中,,且.

(Ⅰ)求证:对任意,总有
(Ⅱ)若,求二面角的余弦值;
(Ⅲ)是否存在,使得在平面上的射影平分?若存在,求出的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
在棱长为的正方体中,是线段 中点,.
(Ⅰ) 求证:^;(Ⅱ) 求证:∥平面
(Ⅲ) 求三棱锥的体积.

查看答案和解析>>

同步练习册答案