精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax2-(2a+1)x+2lnx(a∈R),
(1)若曲线y=f(x)在x=1和x=3处的切线互相平行,求a的值;
(2)求f(x)的单调区间;
(3)设g(x)=x2-2x,若对任意x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),求a的取值范围。
解:
(1)由题意知f′(1)=f′(3),解得
(2)
①当a≤0时,x>0,ax-1<0,在区间(0,2)上,f′(x)>0;在区间(2,+∞)上,f′(x)<0,
故f(x)的单调递增区间是(0,2),单调递减区间是(2,+∞);
②当时,,在区间(0,2)和上,f′(x)>0;在区间上,f′(x)<0,
故f(x)的单调递增区间是(0,2)和,单调递减区间是
③当时,
故f(x)的单调递增区间是(0,+∞);
④当时,,在区间和(2,+∞)上,f′(x)>0;在区间上,f′(x)<0,
故f(x)的单调递增区间是和(2,+∞),单调递减区间是
(3)由题意知,在(0,2]上有f(x)max<g(x)max
在(0,2]上,易得g(x)max=0,
由(2)可知,
①当时,f(x)在(0,2]上单调递增,
故f(x)max=f(2)=2a-2(2a+1)+2ln2=-2a-2+2ln2,
所以,-2a-2+2ln2<0,解得a>ln2-1,
故ln2-1<
②当时,f(x)在上单调递增,在上单调递减,

可知,所以2lna>-2,-2lna<2,
所以,-2-2lna<0,f(x)max<0,故
综上所述,a>ln2-1.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x+1

(1)求证:不论a为何实数f(x)总是为增函数;
(2)确定a的值,使f(x)为奇函数;
(3)当f(x)为奇函数时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)图象经过点Q(8,6).
(1)求a的值,并在直线坐标系中画出函数f(x)的大致图象;
(2)求函数f(t)-9的零点;
(3)设q(t)=f(t+1)-f(t)(t∈R),求函数q(t)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
1
2x+1
,若f(x)为奇函数,则a=(  )
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a(x-1)x2
,其中a>0.
(I)求函数f(x)的单调区间;
(II)若直线x-y-1=0是曲线y=f(x)的切线,求实数a的值;
(III)设g(x)=xlnx-x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定义域;
(2)若f(x)为奇函数,求a的值;
(3)考察f(x)在定义域上单调性的情况,并证明你的结论.

查看答案和解析>>

同步练习册答案