精英家教网 > 高中数学 > 题目详情
7.若对任意的x>1,x2+3≥a(x-1)恒成立,则实数a的最大值是6.

分析 运用参数分离法,化简函数的表达式,利用基本不等式求出左侧的最小值,即可得出结论.

解答 解:对任意的x>1,x2+3≥a(x-1)恒成立,即为a≤$\frac{{x}^{2}+3}{x-1}$,
由$\frac{{x}^{2}+3}{x-1}$=x-1+$\frac{4}{x-1}$+2≥2$\sqrt{(x-1)•\frac{4}{x-1}}$+2=6,
当且仅当x=3时等号成立.($\frac{{x}^{2}+3}{x-1}$)min=6,
对任意的x>1,$\frac{{x}^{2}+3}{x-1}$≥a恒成立,
就是a≤($\frac{{x}^{2}+3}{x-1}$)min=6,
即a的最大值是6.
故答案为:6.

点评 本题考查基本不等式在最值中的应用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.在平面直角坐标系xOy中,动点P到定点(1,0)的距离与到定直线x=2的距离之比为$\frac{\sqrt{2}}{2}$,设动点P的轨迹为C.
(1)求出轨迹C的方程;
(2)设动直线l:y=kx-$\frac{1}{3}$与曲线C交于A、B两点,问在y轴上是否存在定点G,使∠AGB为直角?若存在,求出G的坐标,并求△AGB面积的最大值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知y=$\sqrt{sinx}$+$\sqrt{cosx-\frac{1}{2}}$定义域为[2kπ,$\frac{π}{3}+2kπ$],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系xOy中,点A(-1,-2),B(2,3),C(-2,-1).
(1)若以线段AB,AC为邻边构成平行四边形ABDC,求线段AD的长;
(2)已知平面向量$\overrightarrow{a}$=t$\overrightarrow{AC}$和$\overrightarrow{b}$=(1,5+t)(其中t∈R),求函数f(t)=$\overrightarrow{a}•\overrightarrow{b}$取最小值时向量$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在区间[-$\frac{3}{2}$,$\frac{3}{2}$]上随机取一个数x,使cos$\frac{π}{3}$x的值介于$\frac{1}{2}$到1之间的概率为(  )
A.$\frac{1}{3}$B.$\frac{2}{π}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,在矩形ABCD中,已知AB=2,BC=1,若在矩形ABCD中任取一点P,则点P满足|AP|≤1的概率为(  )
A.$\frac{π}{8}$B.$\frac{π}{16}$C.$\frac{π}{32}$D.$\frac{π}{64}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.分别在区间[0,1]、[1,e]上任取a,b,则随机事件a≥lnb的概率为1-$\frac{2}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设A={x|x>a},B={x|0<x<3},若A∩B=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.对任意实数a,b定义运算“?”:a?b=$\left\{\begin{array}{l}{b,a-b≥1}\\{a,a-b<1}\end{array}\right.$,设f(x)=(x2-1)?(4+x),若函数y=f(x)+k恰有三个零点,则实数k的取值范围是-2≤k<1.

查看答案和解析>>

同步练习册答案