精英家教网 > 高中数学 > 题目详情
设a>1,函数f(x)的图象与函数y=4-a|x-2|-2•ax-2的图象关于点A(1,2)对称.
(1)求函数f(x)的解析式;
(2)若关于x的方程f(x)=m有两个不同的正数解,求实数m的取值范围.
考点:函数的图象与图象变化
专题:数形结合,函数的性质及应用
分析:(1)由于函数图象是中心对称图形,可求出任意一点的对称点,再利用这两点都在图象上,得到函数的解析式;
(2)利用图象特征研究方程有不同的正根,得到参数m的取值范围.
解答: 解:(1)设点P(x,y)是函数f(x)图象上任意一点,P关于点A对称的点为P′(x′,y′),
x+x′
2
=1
y+y′
2
=2

于是x′=2-x,y′=4-y,
因为P′(x′,y′)在函数g(x)的图象上,
所以y′=4-a|x'-2|-2•ax'-2
即4-y=4-a|-x|-2•a-x,y=a|x|+2•a-x
所以f(x)=a|x|+2•a-x
(2)令ax=t,因为a>1,x>0,所以t>1,
所以方程f(x)=m可化为t+
2
t
=m

即关于t的方程t2-mt+2=0有大于1的相异两实数解.
作h(t)=t2-mt+2,则
h(1)>0
m
2
>1
m2-8>0

解得2
2
<m<3

所以m的取值范围是(2
2
 , 3)
点评:本题考查了函数图象的对称性,函数图象与方程根的关系,考查了数形结合的数学思想,有一定的思维难度,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦点为F(c,0),直线x=
a2
c
与一条渐近线交于点A,△OAF的面积为
a2
2
(O为原点),则抛物线y2=
4a
b
x的准线方程为(  )
A、x=-1B、x=-2
C、y=-1D、y=-2

查看答案和解析>>

科目:高中数学 来源: 题型:

定义函数fk(x)=
alnx
xk
为f(x)的k阶函数.
(1)当a=1时,求一阶函数f1(x)的单调区间;
(2)讨论方程f2(x)=1的解的个数;
(3)求证:3elnx≤x3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
lnx
x
的图象为曲线C.
(1)求曲线C:y=f(x)在点A(1,0)处的切线l的方程.
(2)证明:除切点(1,0)之外,切线l在曲线C的上方.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1-cosx(0<x<
π
2
).数列{an}满足:0<a1
π
2
,an+1=f(an),n∈N*
(Ⅰ)求证:0<an
π
2
(n∈N*);
(Ⅱ)求证:数列{an}是递减数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的定义域为[-1,1],且f(-x)=-f(x),f(1)=1,当a,b∈[-1,1]且a+b≠0,时
f(a)+f(b)
a+b
>0
恒成立.
(1)判断f(x)在[-1,1]上的单调性;
(2)解不等式f(x+
1
2
)<f(
1
x-1
)

(3)若f(x)<m2-2am+1对于所有x∈[-1,1],a∈[-1,1]恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x-
1
x
-alnx

(1)若函数f(x)在点(1,f(1))处的切线与圆x2+y2-2y=0相切,求a的值;
(2)当x∈(1,+∞)时,函数f(x)的图象恒在坐标轴x轴的上方,试求出a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sinωx•cosωx+
3
cos2ωx-
3
2
(ω>0),直线x=x1,x=x2是y=f(x)图象的任意两条对称轴,且|x1-x2|的最小值为
π
4

(Ⅰ)求f(x)在x∈[-π,0]的单调增区间;
(Ⅱ)将函数f(x)的图象向右平移
π
8
个单位后,再将得到的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数y=g(x)的图象,若关于x的方程g(x)+k=0,在区间[0,
π
2
]上有解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某厂生产某种产品x件的总成本c(x)=1200+
2
75
x3(万元),已知产品单价的平方与产品件数x成反比,生产100件这样的产品单价为50万元,产量定为多少时总利润最大?

查看答案和解析>>

同步练习册答案