精英家教网 > 高中数学 > 题目详情
设数列{an}的前n项和为Sn=2n2+3n,求数列{an}的通项公式.
考点:数列的求和
专题:等差数列与等比数列
分析:当n=1时直接由前n项和求首项,当n≥2时由an=Sn-Sn-1求通项,验证首项好得结论.
解答: 解:由Sn=2n2+3n,
当n=1时,a1=S1=5;
当n≥2时,an=Sn-Sn-1
=2n2+3n-[2(n-1)2+3(n-1)]=4n+1.
验证n=1时上式成立.
∴an=4n+1.
点评:本题考查了由数列的和求数列的通项公式,关键是注意验证n=1时的情况,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=3x2-8(m-1)x+5在[-1,+∞)上为增函数.
(1)求实数m的最大值M;
(2)在条件(1)下解关于x的不等式:1+logM(4-a2)≤log
M
(ax-1)(其中a>0,a≠1).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=
2
x2-x+1
,求函数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

当x∈[0,
6
]时,讨论关于x的方程2cos2x-sinx+α=0(α∈R)实根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆心在第二象限内,半径为2
5
的圆O1与x轴交于(-5,0)和(3,0)两点.
(1)求圆O1的方程;
(2)求圆O1的过点A(1,6)的切线方程;
(3)已知点N(9,2)在(2)中的切线上,过点A作O1N的垂线,垂足为M,点H为线段AM上异于两个端点的动点,以点H为中点的弦与圆交于点B,C,过B,C两点分别作圆的切线,两切线交于点P,求直线PO1的斜率与直线PN的斜率之积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+
1
x
,x∈[-1,0)∪(0,1].
(1)证明函数f(x)在(0,1]上的单调性.
(2)判断函数f(x)的奇偶性,并求函数f(x)在[-
1
2
,-
1
3
]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在二项式(
1
2
+2x)n的展开式中.
(Ⅰ)若第5项,第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大的项;
(Ⅱ)若前三项的二项式系数和等于79,求展开式中系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:tan(α+
π
4
)=-
1
2
,(
π
2
<α<π).
(1)求tanα的值;
(2)求sin2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

解关于x的不等式(x-
1
a
)(x-1)<0.

查看答案和解析>>

同步练习册答案