精英家教网 > 高中数学 > 题目详情

【题目】如图,正方体ABCD﹣A1B1C1D1的棱长为1,N为CD1中点,M为线段BC1上的动点,(M不与B,C1重合)有四个命题:
①CD1⊥平面BMN;
②MN∥平面AB1D1
③平面AA1CC1⊥平面BMN;
④三棱锥D﹣MNC的体积有最大值.
其中真命题的序号是

【答案】②③
【解析】解:①∵CD1与BM成60°角,∴CD1与平面BMN不垂直,①错误;
②∵平面BMN∥平面AB1D1 , ∴MN∥平面AB1D1 , ②正确;
③∵平面BMN与平面BC1D重合,而平面AA1CC1⊥平面BC1D,③正确;
④∵M与B重合时,三棱锥D﹣MNC的体积最大,而M不与B,C1重合,④错误.
∴z正确命题的序号为②③.
所以答案是:②③.

【考点精析】解答此题的关键在于理解棱柱的结构特征的相关知识,掌握两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若实数a,b,c满足loga3<logb3<logc3,则下列关系中不可能成立的(
A.a<b<c
B.b<a<c
C.c<b<a
D.a<c<b

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲乙两种商品在过去一段时间内的价格走势如图所示,假设某人持有资金120万元,他可以在t1至t4的任意时刻买卖这两种商品,且买卖能够立即成交(其他费用忽略不计),那么他持有的资金最多可变为(
A.120万元
B.160万元
C.220万元
D.240万元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设关于某设备的使用年限x和所支出的维修费用y(万元),有如下的统计资料:

x

1

2

3

4

5

y

5

6

7

8

10

由资料可知y对x呈线性相关关系,且线性回归方程为 ,请估计使用年限为20年时,维修费用约为(
A.26.2
B.27
C.27.6
D.28.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=2px上一点 到焦点F距离为1,
(1)求抛物线C的方程;
(2)直线l过点(0,2)与抛物线交于M,N两点,若OM⊥ON,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆W: ,过原点O作直线l1交椭圆W于A,B两点,P为椭圆上异于A,B的动点,连接PA,PB,设直线PA,PB的斜率分别为k1 , k2(k1 , k2≠0),过O作直线PA,PB的平行线l2 , l3 , 分别交椭圆W于C,D和E,F.
(1)若A,B分别为椭圆W的左、右顶点,是否存在点P,使∠APB=90°?说明理由.
(2)求k1k2的值;
(3)求|CD|2+|EF|2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直平行六面体ABCD﹣A1B1C1D1中,底面ABCD是菱形,∠DAB=60°,AC∩BD=O,AB=AA1=1.

(1)求证:OC1∥平面AB1D1
(2)求证:平面AB1D1⊥平面ACC1A1
(3)求三棱锥A1﹣AB1D1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种产品特约经销商根据以往当地的需求情况,得出如图该种产品日需求量的频率分布直方图.

(1)求图中a的值,并估计日需求量的众数;
(2)某日,经销商购进130件该种产品,根据近期市场行情,当天每售出1件能获利30元,未售出的部分,每件亏损20元.设当天的需求量为x件(100≤x≤150),纯利润为S元.
(ⅰ)将S表示为x的函数;
(ⅱ)根据直方图估计当天纯利润S不少于3400元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方体ABCD﹣A1B1C1D1 , 则AC与平面BDC1所成角的余弦值为( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案