【题目】已知函数,且在上满足恒成立.
(1)求实数的值;
(2)令在上的最小值为,求证:.
【答案】(1)(2)证明见解析
【解析】
(1)分别在和两种情况下讨论导函数的正负,得到原函数单调性,由此可知时不合题意,并求出时,,则只需即可,令,利用导数可求得,结合,由此可确定仅有满足条件;
(2)利用导数和零点存在性定理可确定函数的单调性,得到,由可化简得到,代入解析式即可证得结论.
(1)当时,原函数可化为:,则,
当时,,在上单调递增,
,当时,,不合题意;
当时,,
∴当时,;当时,,
在上单调递增,在上单调递减,
即.
要使在时恒成立,则只需,即.
令,则,
∴当时,;当时,,
即在上单调递减,在上单调递增.
又,满足条件的只有,即.
(2)由(1)知:,,
,.
令,则,
,,即在上单调递增;
又,,
,使得,即,
且当时,;当时,,
即在上单调递减;在上单调递增,
,即,
,
即.
科目:高中数学 来源: 题型:
【题目】方程x2+x-1=0的解可视为函数y=x+的图象与函数y=的图象交点的横坐标,若x4+ax-4=0的各个实根x1,x2,…,xk(k≤4)所对应的点(xi ,)(i=1,2,…,k)均在直线y=x的同侧,则实数a的取值范围是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知四棱锥的底面是边长为的菱形,,点E是棱BC的中点,,点P在平面ABCD的射影为O,F为棱PA上一点.
1求证:平面平面BCF;
2若平面PDE,,求四棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某少儿游泳队需对队员进行限时的仰卧起坐达标测试.已知队员的测试分数与仰卧起坐
个数之间的关系如下:;测试规则:每位队员最多进行三组测试,每组限时1分钟,当一组测完,测试成绩达到60分或以上时,就以此组测试成绩作为该队员的成绩,无需再进行后续的测试,最多进行三组;根据以往的训练统计,队员“喵儿”在一分钟内限时测试的频率分布直方图如下:
(1)计算值;
(2)以此样本的频率作为概率,求
①在本次达标测试中,“喵儿”得分等于的概率;
②“喵儿”在本次达标测试中可能得分的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设定义在R上的函数f(x)是最小正周期为2π的偶函数,f'(x)是f(x)的导函数,当x∈[0,π]时,0≤f(x)≤1;当x∈(0,π)且x≠时, ,则函数y=f(x)-|sinx|在区间上的零点个数为( )
A. 4 B. 6 C. 7 D. 8
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下面类比推理:
①“若2a<2b,则a<b”类比推出“若a2<b2,则a<b”;
②“(a+b)c=ac+bc(c≠0)”类比推出“ (c≠0)”;
③“a,b∈R,若a-b=0,则a=b”类比推出“a,b∈C,若a-b=0,则a=b”;
④“a,b∈R,若a-b>0,则a>b”类比推出“a,b∈C,若a-b>0,则a>b(C为复数集)”.
其中结论正确的个数为( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,设抛物线的焦点为F,点P是半椭圆上的一点,过点P作抛物线C的两条切线,切点分别为A、B,且直线PA、PB分别交y轴于点M、N.
(1)证明:;
(2)求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设有关于x的一元二次方程.
(1)若a是从0、1、2、3四个数中任取的一个数,是从0、1、2三个数中任取的一个数,求上述方程没有实根的概率.
(2)若a是从区间内任取的一个数,,求上述方程没有实根的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com