1£®ÒÑÖªµÈ²îÊýÁÐ{an}ºÍ{bn} µÄǰnÏîºÍS·Ö±ðΪSn¡¢Tn£¬ÇÒ$\frac{{S}_{n}}{{T}_{n}}$=$\frac{7n+1}{n+3}$£¬Ôò$\frac{{a}_{2}+{a}_{5}+{a}_{17}+{a}_{22}}{{b}_{8}+{b}_{10}+{b}_{12}+{b}_{16}}$=£¨¡¡¡¡£©
A£®$\frac{31}{5}$B£®$\frac{32}{5}$C£®6D£®7

·ÖÎö ÓÉÒÑÖªÀûÓõȲîÊýÁеÄͨÏʽÏÈÇó³ö$\frac{{a}_{2}+{a}_{5}+{a}_{17}+{a}_{22}}{{b}_{8}+{b}_{10}+{b}_{12}+{b}_{16}}$=$\frac{{a}_{1}+{a}_{22}}{{b}_{1}+{b}_{22}}$£¬ÔÙÓɵȲîÊýÁÐǰnÏîºÍ¹«Ê½ÍƵ¼³öԭʽµÈÓÚ$\frac{{S}_{22}}{{T}_{22}}$£¬ÓÉ´ËÄÜÇó½â³ö½á¹û£®

½â´ð ½â£º¡ßµÈ²îÊýÁÐ{an}ºÍ{bn} µÄǰnÏîºÍS·Ö±ðΪSn¡¢Tn£¬ÇÒ$\frac{{S}_{n}}{{T}_{n}}$=$\frac{7n+1}{n+3}$£¬
¡àÓɵȲîÊýÁеÄͨÏʽ¿ÉµÃ£º
$\frac{{a}_{2}+{a}_{5}+{a}_{17}+{a}_{22}}{{b}_{8}+{b}_{10}+{b}_{12}+{b}_{16}}$
=$\frac{2£¨2{a}_{1}+21d£©}{2£¨2{b}_{1}+21d£©}$
=$\frac{{a}_{1}+{a}_{22}}{{b}_{1}+{b}_{22}}$
=$\frac{\frac{22£¨{a}_{1}+{a}_{22}£©}{2}}{\frac{22£¨{b}_{1}+{b}_{22}£©}{2}}$
=$\frac{{S}_{22}}{{T}_{22}}$=$\frac{7¡Á22+1}{22+3}$
=$\frac{155}{25}$=$\frac{31}{5}$£¬
¹ÊÑ¡£ºA£®

µãÆÀ ±¾Ì⿼²éÁ½¸öµÈ²îÊýÁеÄÈô¸ÉÏîµÄºÍµÄ±ÈÖµµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâµÈ²îÊýÁеÄÐÔÖʵĺÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®½«º¯Êýy=sin£¨¦Øx+¦Õ£©£¨¦Ø£¾0£¬0£¼¦Õ£¼$\frac{¦Ð}{2}$£©µÄͼÏóÏòÓÒÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»ºó£¬µÃµ½º¯Êýy=cos£¨$\frac{¦Ð}{2}$-2x£©µÄͼÏó£¬Ôòº¯Êýy=sin£¨¦Øx+¦Õ£©µÄ¶Ô³ÆÖÐÐÄÊÇ£¨$\frac{k¦Ð}{2}$-$\frac{¦Ð}{6}$£¬0£©£¬k¡ÊZ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®¸ø³öÈý¸ö²»µÈʽ£º¢Ùx2-y2£¾0£»¢Úx2-y2£¼0£»¢Ûx2+y2£¾0£¬ÈçͼËùʾµÄÒõÓ°ÇøÓòÓ¦ÊÇÐòºÅΪ¢ÚµÄ²»µÈʽËù±íʾµÄÆ½ÃæÇøÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÒÑÖª£¨2x-1£©6=a0+a1x+a2x2+a3x3+¡­+a6x6£®Ôòa1+2a2+3a3+¡­+6a6=12£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®Éè¡÷ABCÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬ÒÑÖªbc=60£¬S¡÷ABC=15$\sqrt{3}$£®ÔòAΪ£¨¡¡¡¡£©
A£®30¡ãB£®60¡ãC£®60¡ã»ò120¡ãD£®30¡ã»ò150¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÔڵȲîÊýÁÐ{an}ÖУ¬Èôa3+a8+a13=12£¬a3a8a13=28£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Çóa23µÄÖµ£»
£¨3£©-$\frac{16}{5}$ÊÇ·ñÊÇÊýÁÐ{an}ÖеÄÏ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®»¯¼ò£º$\frac{cos£¨¦Á+¦Ð£©•sin^2£¨¦Á+¦Ð£©}{tan^2£¨¦Ð+¦Á£©•cos^3¦Á}$=-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÒÑÖªf£¨x£©=x3£¬g£¨x£©=-x2+x-$\frac{2}{9}$a£¬Èô´æÔÚx0¡Ê[-1£¬$\frac{a}{3}$]£¨a£¾0£©£¬Ê¹µÃf£¨x0£©£¼g£¨x0£©£¬ÔòÕýÊýaµÄȡֵ·¶Î§ÊÇ$£¨0£¬\frac{\sqrt{21}-3}{2}£©$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÈôÅ×ÎïÏßy2=16xµÄ½¹µãFÓëË«ÇúÏß$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨b£¾0£©µÄÓÒ½¹µãÖØºÏ£¬Ôò½¹µãFµ½ÇúÏߵĽ¥½üÏߵľàÀëÊÇ$\sqrt{7}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸