分析 (1)由等差数列的性质得$\left\{\begin{array}{l}{{a}_{3}+{a}_{13}=2{a}_{8}=8}\\{{a}_{3}{a}_{13}=7}\end{array}\right.$,解方程组可得a3和a13,可得公差d,则通项公式可求;
(2)分别求出在不同通项公式下的a23的值;
(3)把-$\frac{16}{5}$分别代入两个不同的通项公式,求解n的值得答案.
解答 解:(1)∵在等差数列中a3+a8+a13=3a8=12,∴a8=4,
∴a3a8a13=4a3a13=28,∴a3a13=7,
联立$\left\{\begin{array}{l}{{a}_{3}+{a}_{13}=2{a}_{8}=8}\\{{a}_{3}{a}_{13}=7}\end{array}\right.$,解得$\left\{\begin{array}{l}{{a}_{3}=1}\\{{a}_{13}=7}\end{array}\right.$或$\left\{\begin{array}{l}{{a}_{3}=7}\\{{a}_{13}=1}\end{array}\right.$,
当$\left\{\begin{array}{l}{{a}_{3}=1}\\{{a}_{13}=7}\end{array}\right.$时,数列的公差d=$\frac{7-1}{13-3}=\frac{3}{5}$,通项an=1+$\frac{3}{5}$(n-3)=$\frac{3n-4}{5}$;
当$\left\{\begin{array}{l}{{a}_{3}=7}\\{{a}_{13}=1}\end{array}\right.$时,数列的公差d=$\frac{1-7}{13-3}=-\frac{3}{5}$,通项an=7-$\frac{3}{5}$(n-3)=$\frac{-3n+44}{5}$.
(2)当an=$\frac{3n-4}{5}$时,${a}_{23}=\frac{3×23-4}{5}=13$;
当an=$\frac{-3n+44}{5}$时,${a}_{23}=\frac{-3×23+44}{5}=-5$.
(3)当an=$\frac{3n-4}{5}$时,由$\frac{3n-4}{5}=-\frac{16}{5}$,解得n=-4,不合题意,
∴-$\frac{16}{5}$不是数列{an}中的项;
当an=$\frac{-3n+44}{5}$时,由$\frac{-3n+44}{5}=-\frac{16}{5}$,解得n=20.
∴-$\frac{16}{5}$是数列{an}中的第20项.
点评 本题考查等差数列的通项公式,涉及方程组的解法和分类讨论,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{31}{5}$ | B. | $\frac{32}{5}$ | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com