精英家教网 > 高中数学 > 题目详情
11.将函数y=sin(ωx+φ)(ω>0,0<φ<$\frac{π}{2}$)的图象向右平移$\frac{π}{6}$个单位后,得到函数y=cos($\frac{π}{2}$-2x)的图象,则函数y=sin(ωx+φ)的对称中心是($\frac{kπ}{2}$-$\frac{π}{6}$,0),k∈Z.

分析 把函数y=cos($\frac{π}{2}$-2x)的图象的对称中心向左平移$\frac{π}{6}$个单位,可得函数y=sin(ωx+φ)的对称中心.

解答 解:对于函数y=cos($\frac{π}{2}$-2x)=sin2x,令2x=kπ,求得x=$\frac{kπ}{2}$,
可得它的图象的对称中心为($\frac{kπ}{2}$,0),k∈Z.
根据题意,把此对称中心($\frac{kπ}{2}$,0),k∈Z,向左平移$\frac{π}{6}$个单位,
可得函数y=sin(ωx+φ)(ω>0,0<φ<$\frac{π}{2}$)的图象对称中心,
故函数y=sin(ωx+φ)(ω>0,0<φ<$\frac{π}{2}$)的图象对称中心为($\frac{kπ}{2}$-$\frac{π}{6}$,0),k∈Z,
故答案为:($\frac{kπ}{2}$-$\frac{π}{6}$,0),k∈Z.

点评 本题主要考查诱导公式的应用,利用了y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.1+x1+x2+…+xn(x≠0)=$\left\{\begin{array}{l}{n+1,x=1}\\{\frac{1-{x}^{n+1}}{1-x},x≠0,1}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.执行如图所示的程序框图,如果输入的x=t=3,则输出的M等于(  )
A.3B.$\frac{11}{3}$C.$\frac{19}{6}$D.$\frac{37}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知定义在[1,+∞)上的函数$f(x)=\left\{\begin{array}{l}4-8|{x-\frac{3}{2}}|,1≤x≤2\\ \frac{1}{2}f({\frac{x}{2}}),x>2\end{array}\right.$,当x∈[2n-1,2n](n∈N*)时,函数f(x)的图象与x轴围成的图象面积为Sn,则Sn=(  )
A.nB.2C.2nD.$\frac{n}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在△ABC中,已知a=3,b=4,c=$\sqrt{37}$,则△ABC的面积是3$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知α为钝角,若sin(α+$\frac{π}{3}$)=-$\frac{4}{5}$,则cos(2α+$\frac{5π}{12}$)的值为$\frac{17\sqrt{2}}{50}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若执行如图所示的程序框图,输入x1=1,x2=2,x3=3,$\overline{x}$=2,则输出的数S等于(  )
A.$\frac{2}{3}$B.1C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若直线y=2x+b与曲线y=$\sqrt{4-{x}^{2}}$有且仅有一个公共点,则b的取值范围为{b|-4≤b<4,或b=$2\sqrt{5}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知等差数列{an}和{bn} 的前n项和S分别为Sn、Tn,且$\frac{{S}_{n}}{{T}_{n}}$=$\frac{7n+1}{n+3}$,则$\frac{{a}_{2}+{a}_{5}+{a}_{17}+{a}_{22}}{{b}_{8}+{b}_{10}+{b}_{12}+{b}_{16}}$=(  )
A.$\frac{31}{5}$B.$\frac{32}{5}$C.6D.7

查看答案和解析>>

同步练习册答案