精英家教网 > 高中数学 > 题目详情
5.已知定义在R上的函数f(x)是奇函数,满足f(x+3)=f(x),f(-2)=-3,数列{an}满足a1=-1,且前n项和Sn满足$\frac{S_n}{n}=2×\frac{a_n}{n}+1$,则f(a5)+f(a6)=(  )
A.3B.-3C.0D.6

分析 可由$\frac{{S}_{n}}{n}=2×\frac{{a}_{n}}{n}+1$得到Sn=2an+n,从而可得出an=2an-1-1,这样即可求出a5=-31,a6=-63,而由f(x+3)=f(x)可知f(x)的周期为3,从而可以得出f(a5)+f(a6)=f(2)+f(0),而由条件可以得出f(2)=3,f(0)=0,从而便可得出f(a5)+f(a6)的值.

解答 解:由$\frac{{S}_{n}}{n}=2×\frac{{a}_{n}}{n}+1$得,Sn=2an+n;
∴an=Sn-Sn-1=2an+n-2an-1-n+1;
∴an=2an-1-1,又a1=-1;
∴a2=-3,a3=-7,a4=-15,a5=-31,a6=-63;
由f(x+3)=f(x)知,f(x)的周期为3,且f(-2)=-3,f(0)=0,f(x)为R上的奇函数;
∴f(a5)+f(a6)=f(-31)+f(-63)=f[2+3×(-11)]+f[0+3×(-21)]=f(2)+f(0)=3.
故选:A.

点评 考查数列前n项和的定义,知道an=Sn-Sn-1,以及周期函数的定义,奇函数的定义,奇函数在原点有定义时,原点处的函数值为0.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.若复数z满足$\frac{1-i}{z}$=-i,其中i为虚数单位,则$\overline{z}$=1-i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.展开($\sqrt{x}-\frac{1}{\sqrt{x}}$)5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.等比数列{an}的前n(n∈N*)项和为Sn,若S1=1,S2=3,则S3=(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若集合M={x|x2≤1},N={-2,0,1},则M∩N=(  )
A.{-2,0,1}B.{0,1}C.{-2,0}D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若一元二次不等式ax2+bx+c>0(a≠0)的解集是(-$\frac{1}{2}$,2),则下列不成立的为(  )
A.a<0B.a+b+c>0C.b<0D.c>0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.(1-$\frac{1}{x}$)(1+x)4的展开式中含x2项的系数为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知sinα+cosα=$\sqrt{2}$,α∈(0,π),则tanα=(  )
A.-1B.-$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{2}}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.焦点坐标(-5,0),实轴长为6,求双曲线标准方程并求此双曲线渐近线方程及离心率.

查看答案和解析>>

同步练习册答案