精英家教网 > 高中数学 > 题目详情
已知数列{an}中,a1=2,其前n项和为Sn,满足
Sn+1
=
Sn
+
2

(I)求数列{an}的通项公式;
(II)设数列{bn}满足bn=
2
Sn+1-2
,数列{bn}的前n项和为Tn,求证Tn
3
4
考点:数列与不等式的综合,数列递推式
专题:综合题,等差数列与等比数列
分析:(I)先证明{
Sn
}是以
S1
=
2
为首项,
2
为公差的等差数列,可得Sn=2n2,利用当n≥2时,an=Sn-Sn-1,即可求数列{an}的通项公式;
(II)利用裂项法求和,即可证得结论.
解答: (I)解:∵
Sn+1
=
Sn
+
2

Sn+1
-
Sn
=
2

∴{
Sn
}是以
S1
=
2
为首项,
2
为公差的等差数列
Sn
=
2
+
2
•(n-1)
=
2
n
∴Sn=2n2
当n≥2时,an=Sn-Sn-1=4n-2;当n=1时,a1=2也满足
∴数列{an}的通项公式为an=4n-2;
(II)证明:由(I)知bn=
1
n2-2n
=
1
2
1
n
-
1
n+2

∴Tn=b1+b2+…+bn=
1
2
(1-
1
3
+
1
2
-
1
4
+
1
3
-
1
5
+…+
1
n
-
1
n+2
)=
1
2
1+
1
2
-
1
n+1
-
1
n+2
)=
1
2
3
2
-
1
n+1
-
1
n+2
)<
3
4
点评:本题考查等差数列的证明,考查数列的通项与求和,考查不等式的证明,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在长方形ABCD中,AB=2,BC=1,E为CD的中点,F为AE的中点.现在沿AE将三角形ADE向上折起,在折起的图形中解答下列两问:

(Ⅰ)在线段AB上是否存在一点K,使BC∥面DFK?若存在,请证明你的结论;若不存在,请说明理由;
(Ⅱ)若面ADE⊥面ABCE,求二面角E-AD-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin
x
2
cos
x
2
+cos2
x
2
-1.
(1)求函数f(x)的最小正周期及单调递减区间;
(2)求函数f(x)在[
π
4
2
]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知圆O:x2+y2=25,圆O1的圆心为O1(m,0)且与圆O交于点P(3,4),过点P且斜率为(k≠0)的直线l分别交圆O,O1于点A,B.
(1)若k=1,且BP=7
2
,求圆O1的方程;
(2)过点P作垂直于直线l的直线l1分别交圆O,O1于点C,D.当m为常数时,试判断AB2+CD2是否是定值?若是定值,求出这个值;若不是定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的一元二次不等式kx2+2x-1<0的解集是R,则k的取值范围是          (  )
A、k<-1B、k<0
C、-1<k<0D、k>1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={0,2,4,6},集合Q={0,1,3,5},则M∪Q等于(  )
A、{0}
B、{0,1,2,3,4,5,6}
C、{1,2,3,4,5,6,}
D、{0,3,4,5,6}

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)是定义在[-6,6]上的偶函数,且f(4)>f(2),则下列各式一定成立的是(  )
A、f(0)<f(6)
B、f(3)>f(2)
C、f(2)<f(-4)
D、f(-5)>f(-4)

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的方程3x2-5x+a=0的一个根在(-2,0)内,另一个根在(1,3)内,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2-8x+4y+16=0,直线l过定点(4,0).
(1)若直线l与方向向量为a=(1,3)的直线l1垂直,求原点到直线l的距离
(2)直线l与圆C相交于A,B两点,若△ABC的面积为
8
5
,求直线l的方程.

查看答案和解析>>

同步练习册答案