精英家教网 > 高中数学 > 题目详情
精英家教网如图,在平行四边形OABC中,点O是原点,点A和点C的坐标分别是(3,0)、(1,3),点D是线段AB上的动点.
(1)求AB所在直线的一般式方程;
(2)当D在线段AB上运动时,求线段CD的中点M的轨迹方程.
分析:(1)求出AB所在直线的斜率,利用点斜式求出AB所在的直线方程;
(2)设点M的坐标是(x,y),点D的坐标是(x0,y0),利用平行四边形,推出M与D坐标关系,利用当D在线段AB上运动,求线段CD的中点M的轨迹方程.
解答:解:(1)∵AB∥OC,∴AD所在直线的斜率为:KAB=KOC=3.
∴AB所在直线方程是y-0=3(x-3),即3x-y-9=0.
(2):设点M的坐标是(x,y),点D的坐标是(x0,y0),
由平行四边形的性质得点B的坐标是(4,6),
∵M是线段CD的中点,∴x=
x0+1
2
,y=
y0+3
2

于是有x0=2x-1,y0=2y-3,
∵点D在线段AB上运动,
∴3x0-y0-9=0,(3≤x0≤4),
∴3(2x-1)-(2y-3)-9=0
即6x-2y-9=0,(2≤x≤
5
2
).
点评:本题考查直线方程的求法,与直线有关的动点的轨迹方程的求法,考查转化思想与计算能力,确定M与D坐标关系是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在平行四边形OABC中,点O是原点,点A和点C的坐标分别是(3,0)、(1,3),点D是线段AB上的动点.
(1)求AB所在直线的一般式方程;
(2)当D在线段AB上运动时,求线段CD的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平行四边形OABC中,点O是原点,点A和点C的坐标分别是(3,0)、(1,3),点D是线段AB上的中点.
(1)求AB所在直线的一般式方程;
(2)求直线CD与直线AB所成夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平行四边形ABCD中,O是对角线AC,BD的交点,N是线段OD的中点,AN的延长线与CD交于点E,则下列说法错误的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•浦东新区一模)如图,在平行四边形ABCD中,O为对角线交点,AB=2,AD=3,则
AC
BD
=
5
5

查看答案和解析>>

同步练习册答案