10£®ÒÑÖªÔ²M£º£¨x-m£©2+y2=1µÄÇÐÏßl£¬µ±lµÄ·½³ÌΪy=1ʱ£¬Ö±ÏßlÓëÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ÏàÇУ¬ÇÒÍÖÔ²µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£®
£¨1£©ÇóÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨2£©µ±m£¼0ʱ£¬ÉèS±íʾÈý½ÇÐεÄÃæ»ý£¬ÈôMµÄÇÐÏßl£ºy=kx+$\sqrt{2}$ÓëÍÖÔ²C½»ÓÚ²»Í¬µÄÁ½µãP£¬Q£¬µ±tan¡ÏPOQ=3S¡÷POQʱ£¬µãAÔÚÅ×ÎïÏßy2=2$\sqrt{2}$xÉÏ£¬µãBÔÚÔ²MÉÏ£¬Çó|AB|µÄ×îСֵ£®

·ÖÎö £¨1£©µ±lµÄ·½³ÌΪy=1ʱ£¬Ö±ÏßlÓëÍÖÔ²ÏàÇУ¬µÃµ½b=1£¬ÔÙÓÉÍÖÔ²µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬µÃa=$\sqrt{2}$£¬ÓÉ´ËÄÜÇó³öÍÖÔ²µÄ±ê×¼·½³Ì£®
£¨2£©ÓÉÖ±ÏßlÓëÍÖÔ²ÏàÇУ¬µÃ£¨km+$\sqrt{2}$£©2=1+k2£¬ÓÉ$\left\{\begin{array}{l}{\frac{{x}^{2}}{2}+{y}^{2}=1}\\{y=kx+\sqrt{2}}\end{array}\right.$£¬µÃ£¨1+2k2£©x2+4$\sqrt{2}kx+2=0$£¬ÓÉ´ËÀûÓøùµÄÅбðʽ¡¢Î¤´ï¶¨Àí¡¢ÏòÁ¿µÄÊýÁ¿»ý¡¢ÍÖÔ²ÏÒ³¤¹«Ê½£¬½áºÏÒÑÖªÌõ¼þÄÜÇó³öÅ×ÎïÏß${y}^{2}=-2\sqrt{2}x$ÓëÔ²MÉÏÈÎÒâÁ½µã¼ä×î¶Ì¾àÀ룮

½â´ð ½â£º£¨1£©¡ßÔ²M£º£¨x-m£©2+y2=1µÄÇÐÏßl£¬µ±lµÄ·½³ÌΪy=1ʱ£¬Ö±ÏßlÓëÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ÏàÇУ¬
¡àb=1£¬
¡ßÍÖÔ²µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬¡àe=$\frac{c}{a}=\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$=$\frac{\sqrt{2}}{2}$£¬½âµÃa=$\sqrt{2}$£¬
¡àÍÖÔ²µÄ±ê×¼·½³ÌΪ$\frac{{{x}^{2}}_{\;}}{2}$+y2=1£®
£¨2£©ÓÉÖ±ÏßlÓëÍÖÔ²ÏàÇУ¬µÃ$\frac{|km+\sqrt{2}|}{\sqrt{1+{k}^{2}}}$=1£¬
¡à£¨km+$\sqrt{2}$£©2=1+k2£¬
ÓÉ$\left\{\begin{array}{l}{\frac{{x}^{2}}{2}+{y}^{2}=1}\\{y=kx+\sqrt{2}}\end{array}\right.$£¬µÃ£¨1+2k2£©x2+4$\sqrt{2}kx+2=0$£¬
ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬Ôò$¡÷=£¨4\sqrt{2}k£©^{2}-8£¨1+2{k}^{2}£©£¾0$£¬½âµÃ${k}^{2}£¾\frac{1}{2}$£¬
¡à${x}_{1}+{x}_{2}=\frac{-4\sqrt{2}k}{1+2{k}^{2}}$£¬${x}_{1}{x}_{2}=\frac{2}{1+2{k}^{2}}$£¬
¡à${y}_{1}{y}_{2}=£¨k{x}_{1}+\sqrt{2}£©£¨k{x}_{2}+\sqrt{2}£©$=${k}^{2}{x}_{1}{x}_{2}+\sqrt{2}k£¨{x}_{1}+{x}_{2}£©+2$=$\frac{2-2{k}^{2}}{1+2{k}^{2}}$£¬
¡ßtan¡ÏPOQ=3S¡÷POQ£¬¡àtan$¡ÏPOQ=3¡Á\frac{1}{2}|\overrightarrow{OP}|•|\overrightarrow{OQ}|$sin¡ÏPOQ£¬
¡à$|\overrightarrow{OP}|•|\overrightarrow{OQ}|$cos¡ÏPOQ=$\overrightarrow{OP}•\overrightarrow{OQ}$=$\frac{2}{3}$£¬
¡à$\overrightarrow{OP}•\overrightarrow{OQ}={x}_{1}{x}_{2}+{y}_{1}{y}_{2}$=$\frac{4-2{k}^{2}}{1+2{k}^{2}}$=$\frac{2}{3}$£¬¡à${k}^{2}=1£¾\frac{1}{2}$£¬
¡à£¨km+$\sqrt{2}$£©2=2£¬¡àm=0£¨Éᣩ£¬»òm=2$\sqrt{2}$£¨Éᣩ»òm=-2$\sqrt{2}$£¬
¡àÔ²M£º£¨x+2$\sqrt{2}$£©2+y2=1£®
ÉèÅ×ÎïÏß${y}^{2}=-2\sqrt{2}x$ÉÏÒ»µãP£¨x£¬y£©£¬
Ôò|PM|=$\sqrt{£¨x+2\sqrt{2}£©^{2}+{y}^{2}}$=$\sqrt{£¨x+2\sqrt{2}£©^{2}-2\sqrt{2}x}$=$\sqrt{£¨x+\sqrt{2}£©^{2}+6}$£¬
µ±x=-$\sqrt{2}$ʱ£¬|PM|ÓÐ×îСֵ$\sqrt{6}$¡·1£¬
¡àÅ×ÎïÏßy2=2$\sqrt{2}x$£¬|PM|ÓÐ×îСֵ$\sqrt{6}£¾1$£¬
¡àÅ×ÎïÏß${y}^{2}=-2\sqrt{2}x$ÓëÔ²MÉÏÈÎÒâÁ½µã¼ä×î¶Ì¾àÀë¼´|AB|µÄ×îСֵΪ$\sqrt{6}-1$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éÏ߶㤵Ä×îСֵµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâ¸ùµÄÅбðʽ¡¢Î¤´ï¶¨Àí¡¢ÏòÁ¿µÄÊýÁ¿»ý¡¢ÍÖÔ²ÏÒ³¤¹«Ê½¡¢ÍÖÔ²¡¢Ô²¡¢Å×ÎïÏßµÈ֪ʶµãµÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Èçͼ¼×£º¡ÑOµÄÖ±¾¶AB=2£¬Ô²ÉÏÁ½µãC£¬DÔÚÖ±¾¶ABµÄÁ½²à£¬Ê¹¡ÏCAB=$\frac{¦Ð}{4}$£¬¡ÏDAB=$\frac{¦Ð}{3}$£¬ÑØÖ±¾¶ABÕÛÆð£¬Ê¹Á½¸ö°ëÔ²ËùÔ򵀮½Ã滥Ïà´¹Ö±£¨ÈçͼÒÒ£©£¬FΪBCµÄÖе㣬¸ù¾ÝͼÒÒ½â´ðÏÂÁи÷Ì⣺
£¨¢ñ£©ÈôµãGÊÇ$\widehat{BD}$µÄÖе㣬֤Ã÷£ºFG¡ÎÆ½ÃæACD£»
£¨¢ò£©ÇóÆ½ÃæACDÓëÆ½ÃæBCDËù³ÉµÄÈñ¶þÃæ½ÇµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÒÑÖªÕý·½ÌåABCD-A1B1C1D1£¬µãEΪÀâAA1µÄÖе㣬ÔòÒìÃæÖ±ÏßB1D1ÓëDEËù³É½ÇµÄ´óСÊÇarccos$\frac{\sqrt{10}}{5}$£¨½á¹ûÓ÷´Èý½Çº¯ÊýÖµ±íʾ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªÍÖÔ²C£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$µÄ×óÓÒ¶¥µã·Ö±ðΪA£¬B£¬ÓÒ½¹µãΪF£¬ÀëÐÄÂÊ$e=\frac{1}{2}$£¬µãPÊÇÍÖÔ²CÉÏÒìÓÚA£¬BÁ½µãµÄ¶¯µã£¬¡÷APBµÄÃæ»ý×î´óֵΪ$2\sqrt{3}$£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÈôÖ±ÏßAPÓëÖ±Ïßx=2½»ÓÚµãD£¬ÊÔÅжÏÒÔBDΪֱ¾¶µÄÔ²ÓëÖ±ÏßPFµÄλÖùØÏµ£¬²¢×÷³öÖ¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Èçͼ£¬ÈýÀâÖùABC-A1B1C1ÖУ¬AA1¡ÍÆ½ÃæABC£¬BC¡ÍAC£¬BC=AC=2£¬AA1=3£¬DΪACµÄÖеã
£¨¢ñ£©ÇóÖ¤£ºAB1¡ÎÆ½ÃæBDC1£»
£¨¢ò£©Çó¶þÃæ½ÇC1-BD-CµÄÓàÏÒÖµ£»
£¨¢ó£©ÔÚ²àÀâAA1ÉÏÊÇ·ñ´æÔÚµãP£¬Ê¹µÃCP¡ÍÆ½ÃæBDC1£¿Èô´æÔÚ£¬Çó³öAPµÄ³¤£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Èçͼ£¬ÒÑÖªÍÖÔ²C£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$µÄÉ϶¥µãΪA£¨0£¬1£©£¬ÀëÐÄÂÊΪ$\frac{{\sqrt{3}}}{2}$£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©Èô¹ýµãA×÷Ô²M£º£¨x+1£©2+y2=r2£¨0£¼r£¼1£©µÄÁ½ÌõÇÐÏß·Ö±ðÓëÍÖÔ²CÏཻÓÚµãB£¬D£¨²»Í¬ÓÚµãA£©£®µ±r±ä»¯Ê±£¬ÊÔÎÊÖ±ÏßBDÊÇ·ñ¹ýij¸ö¶¨µã£¿ÈôÊÇ£¬Çó³ö¸Ã¶¨µã£»Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªÊýÁÐ{an}Âú×ãa1=1£¬an+1-2an=2n£¬
£¨1£©Ö¤Ã÷£ºÊýÁÐ{$\frac{{a}_{n}}{{2}^{n}}$}ÊǵȲîÊýÁУ¬²¢Çó³ö{an}µÄͨÏʽ£»
£¨2£©Éèbn=$\frac{£¨n+2£©{2}^{n-1}}{{a}_{n}{a}_{n+1}}$£¬{bn}µÄǰnÏîºÍΪSn£¬ÇóÖ¤£ºSn£¼1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬ÒÑÖª$¡ÏBAC=\frac{¦Ð}{3}$£¬AB=2£¬AC=4£¬µãDΪ±ßBCÉÏÒ»µã£¬Âú×ã$\overrightarrow{AC}$+2$\overrightarrow{AB}$=3$\overrightarrow{AD}$£¬µãEÊÇADÉÏÒ»µã£¬Âú×ã$\overrightarrow{AE}$=2$\overrightarrow{ED}$£¬ÔòBE=$\frac{2\sqrt{21}}{9}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®Ö´ÐÐÈçͼËùʾµÄ³ÌÐò¿òͼ£¬Êä³öµÄ½á¹ûÊÇ£¨¡¡¡¡£©
A£®15B£®21C£®24D£®35

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸