·ÖÎö £¨1£©µ±lµÄ·½³ÌΪy=1ʱ£¬Ö±ÏßlÓëÍÖÔ²ÏàÇУ¬µÃµ½b=1£¬ÔÙÓÉÍÖÔ²µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬µÃa=$\sqrt{2}$£¬ÓÉ´ËÄÜÇó³öÍÖÔ²µÄ±ê×¼·½³Ì£®
£¨2£©ÓÉÖ±ÏßlÓëÍÖÔ²ÏàÇУ¬µÃ£¨km+$\sqrt{2}$£©2=1+k2£¬ÓÉ$\left\{\begin{array}{l}{\frac{{x}^{2}}{2}+{y}^{2}=1}\\{y=kx+\sqrt{2}}\end{array}\right.$£¬µÃ£¨1+2k2£©x2+4$\sqrt{2}kx+2=0$£¬ÓÉ´ËÀûÓøùµÄÅбðʽ¡¢Î¤´ï¶¨Àí¡¢ÏòÁ¿µÄÊýÁ¿»ý¡¢ÍÖÔ²ÏÒ³¤¹«Ê½£¬½áºÏÒÑÖªÌõ¼þÄÜÇó³öÅ×ÎïÏß${y}^{2}=-2\sqrt{2}x$ÓëÔ²MÉÏÈÎÒâÁ½µã¼ä×î¶Ì¾àÀ룮
½â´ð ½â£º£¨1£©¡ßÔ²M£º£¨x-m£©2+y2=1µÄÇÐÏßl£¬µ±lµÄ·½³ÌΪy=1ʱ£¬Ö±ÏßlÓëÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ÏàÇУ¬
¡àb=1£¬
¡ßÍÖÔ²µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬¡àe=$\frac{c}{a}=\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$=$\frac{\sqrt{2}}{2}$£¬½âµÃa=$\sqrt{2}$£¬
¡àÍÖÔ²µÄ±ê×¼·½³ÌΪ$\frac{{{x}^{2}}_{\;}}{2}$+y2=1£®
£¨2£©ÓÉÖ±ÏßlÓëÍÖÔ²ÏàÇУ¬µÃ$\frac{|km+\sqrt{2}|}{\sqrt{1+{k}^{2}}}$=1£¬
¡à£¨km+$\sqrt{2}$£©2=1+k2£¬
ÓÉ$\left\{\begin{array}{l}{\frac{{x}^{2}}{2}+{y}^{2}=1}\\{y=kx+\sqrt{2}}\end{array}\right.$£¬µÃ£¨1+2k2£©x2+4$\sqrt{2}kx+2=0$£¬
ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬Ôò$¡÷=£¨4\sqrt{2}k£©^{2}-8£¨1+2{k}^{2}£©£¾0$£¬½âµÃ${k}^{2}£¾\frac{1}{2}$£¬
¡à${x}_{1}+{x}_{2}=\frac{-4\sqrt{2}k}{1+2{k}^{2}}$£¬${x}_{1}{x}_{2}=\frac{2}{1+2{k}^{2}}$£¬
¡à${y}_{1}{y}_{2}=£¨k{x}_{1}+\sqrt{2}£©£¨k{x}_{2}+\sqrt{2}£©$=${k}^{2}{x}_{1}{x}_{2}+\sqrt{2}k£¨{x}_{1}+{x}_{2}£©+2$=$\frac{2-2{k}^{2}}{1+2{k}^{2}}$£¬
¡ßtan¡ÏPOQ=3S¡÷POQ£¬¡àtan$¡ÏPOQ=3¡Á\frac{1}{2}|\overrightarrow{OP}|•|\overrightarrow{OQ}|$sin¡ÏPOQ£¬
¡à$|\overrightarrow{OP}|•|\overrightarrow{OQ}|$cos¡ÏPOQ=$\overrightarrow{OP}•\overrightarrow{OQ}$=$\frac{2}{3}$£¬
¡à$\overrightarrow{OP}•\overrightarrow{OQ}={x}_{1}{x}_{2}+{y}_{1}{y}_{2}$=$\frac{4-2{k}^{2}}{1+2{k}^{2}}$=$\frac{2}{3}$£¬¡à${k}^{2}=1£¾\frac{1}{2}$£¬
¡à£¨km+$\sqrt{2}$£©2=2£¬¡àm=0£¨Éᣩ£¬»òm=2$\sqrt{2}$£¨Éᣩ»òm=-2$\sqrt{2}$£¬
¡àÔ²M£º£¨x+2$\sqrt{2}$£©2+y2=1£®
ÉèÅ×ÎïÏß${y}^{2}=-2\sqrt{2}x$ÉÏÒ»µãP£¨x£¬y£©£¬
Ôò|PM|=$\sqrt{£¨x+2\sqrt{2}£©^{2}+{y}^{2}}$=$\sqrt{£¨x+2\sqrt{2}£©^{2}-2\sqrt{2}x}$=$\sqrt{£¨x+\sqrt{2}£©^{2}+6}$£¬
µ±x=-$\sqrt{2}$ʱ£¬|PM|ÓÐ×îСֵ$\sqrt{6}$¡·1£¬
¡àÅ×ÎïÏßy2=2$\sqrt{2}x$£¬|PM|ÓÐ×îСֵ$\sqrt{6}£¾1$£¬
¡àÅ×ÎïÏß${y}^{2}=-2\sqrt{2}x$ÓëÔ²MÉÏÈÎÒâÁ½µã¼ä×î¶Ì¾àÀë¼´|AB|µÄ×îСֵΪ$\sqrt{6}-1$£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éÏ߶㤵Ä×îСֵµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâ¸ùµÄÅбðʽ¡¢Î¤´ï¶¨Àí¡¢ÏòÁ¿µÄÊýÁ¿»ý¡¢ÍÖÔ²ÏÒ³¤¹«Ê½¡¢ÍÖÔ²¡¢Ô²¡¢Å×ÎïÏßµÈ֪ʶµãµÄºÏÀíÔËÓã®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 15 | B£® | 21 | C£® | 24 | D£® | 35 |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com