精英家教网 > 高中数学 > 题目详情

【题目】如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A到墙面的距离为AB,某目标点P沿墙面上的射线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角θ的大小.若AB=15m,AC=25m,∠BCM=30°,则tanθ的最大值是 . (仰角θ为直线AP与平面ABC所成角)

【答案】
【解析】解:∵AB=15m,AC=25m,∠ABC=90°,
∴BC=20m,
过P作PP′⊥BC,交BC于P′,连接AP′,则tanθ=
设BP′=x,则CP′=20﹣x,
由∠BCM=30°,得PP′=CP′tan30°= (20﹣x),
在直角△ABP′中,AP′=
∴tanθ=
令y= ,则函数在x∈[0,20]单调递减,
∴x=0时,取得最大值为 =
若P′在CB的延长线上,PP′=CP′tan30°= (20+x),
在直角△ABP′中,AP′=
∴tanθ=
令y= ,则y′=0可得x= 时,函数取得最大值
所以答案是:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】求满足下列条件的直线方程.

(1)经过点A(-1,-3),且斜率等于直线3x+8y-1=0斜率的2倍;

(2)过点M(0,4),且与两坐标轴围成三角形的周长为12.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某市准备在道路的一侧修建一条运动比赛道,赛道的前一部分为曲线段,该曲线段是函数时的图象,且图象的最高点为.赛道的中间部分为长千米的直线跑道,且.赛道的后一部分是以为圆心的一段圆弧.

(1)的值和的大小;

(2)若要在圆弧赛道所对应的扇形区域内建一个“矩形草坪”,矩形的一边在道路上,一个顶点在半径上,另外一个顶点在圆弧上,且,求当“矩形草坪”的面积取最大值时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了得到函数y=sin3x+cos3x的图象,可以将函数y= cos3x的图象(
A.向右平移 个单位
B.向左平移 个单位
C.向右平移 个单位
D.向左平移 个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某程序框图如图所示,当输入50时,则该程序运算后输出的结果是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】银川一中为研究学生的身体素质与课外体育锻炼时间的关系,抽取在校200名学生的课外体育锻炼平均每天运动的时间(单位:分钟)进行调查,将收集的数据分成六组,并作出频率分布直方图(如图),将日均课外体育锻炼时间不低于40分钟的学生评价为“课外体育达标”.

课外体育不达标

课外体育达标

合计

合计

(1)请根据直方图中的数据填写下面的列联表,并通过计算判断是否能在犯错误的概率不超过的前提下认为“课外体育达标”与性别有关?

(2)在这两组中采取分层抽样,抽取6人,再从这6名学生中随机抽取2人参加体育知识问卷调查,求这2人中一人来自“课外体育达标”和一人来自“课外体育不达标”的概率.

附参考公式与:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+3|x﹣a|(a∈R).
(1)若f(x)在[﹣1,1]上的最大值和最小值分别记为M(a),m(a),求M(a)﹣m(a);
(2)设b∈R,若[f(x)+b]2≤4对x∈[﹣1,1]恒成立,求3a+b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知q和n均为给定的大于1的自然数,设集合M={0,1,2,…,q﹣1},集合A={x|x=x1+x2q+…+xnqn1 , xi∈M,i=1,2,…n}.
(1)当q=2,n=3时,用列举法表示集合A;
(2)设s,t∈A,s=a1+a2q+…+anqn1 , t=b1+b2q+…+bnqn1 , 其中ai , bi∈M,i=1,2,…,n.证明:若an<bn , 则s<t.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: + =1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.
(1)求椭圆C的标准方程;
(2)设F为椭圆C的左焦点,T为直线x=﹣3上任意一点,过F作TF的垂线交椭圆C于点P,Q.
①证明:OT平分线段PQ(其中O为坐标原点);
②当 最小时,求点T的坐标.

查看答案和解析>>

同步练习册答案