精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C: + =1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.
(1)求椭圆C的标准方程;
(2)设F为椭圆C的左焦点,T为直线x=﹣3上任意一点,过F作TF的垂线交椭圆C于点P,Q.
①证明:OT平分线段PQ(其中O为坐标原点);
②当 最小时,求点T的坐标.

【答案】
(1)解:依题意有 解得

所以椭圆C的标准方程为 + =1


(2)解:设T(﹣3,t),P(x1,y1),Q(x2,y2),PQ的中点为N(x0,y0),

①证明:由F(﹣2,0),可设直线PQ的方程为x=my﹣2,则PQ的斜率

(m2+3)y2﹣4my﹣2=0,

所以

于是 ,从而

,则直线ON的斜率

又由PQ⊥TF知,直线TF的斜率 ,得t=m.

从而 ,即kOT=kON

所以O,N,T三点共线,从而OT平分线段PQ,故得证.

②由两点间距离公式得

由弦长公式得 = =

所以

,则 (当且仅当x2=2时,取“=”号),

所以当 最小时,由x2=2=m2+1,得m=1或m=﹣1,此时点T的坐标为(﹣3,1)或(﹣3,﹣1).


【解析】第(1)问中,由正三角形底边与高的关系,a2=b2+c2及焦距2c=4建立方程组求得a2 , b2;第(2)问中,先设点的坐标及直线PQ的方程,利用两点间距离公式及弦长公式将 表示出来,由 取最小值时的条件获得等量关系,从而确定点T的坐标
【考点精析】掌握椭圆的标准方程是解答本题的根本,需要知道椭圆标准方程焦点在x轴:,焦点在y轴:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A到墙面的距离为AB,某目标点P沿墙面上的射线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角θ的大小.若AB=15m,AC=25m,∠BCM=30°,则tanθ的最大值是 . (仰角θ为直线AP与平面ABC所成角)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】改革开放四十周年纪念币从2018125日起可以开始预约通过市场调查,得到该纪念章每1枚的市场价单位:元与上市时间单位:天的数据如下:

上市时间x

8

10

32

市场价y

82

60

82

根据上表数据,从下列函数:中选取一个恰当的函数刻画改革开放四十周年纪念章的市场价y与上市时间x的变化关系并说明理由

利用你选取的函数,求改革开放四十周年纪念章市场价最低时的上市天数及最低的价格.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】苏格兰数学家纳皮尔发明了对数表,这一发明为当时的天文学家处理“大数运算”做出了巨大贡献法国著名数学家和天文学家拉普拉斯曾说过:“对数倍增了天文学家的寿命”比如在下面的部分对数表中,16,256对应的幂指数分别为4,8,幂指数和为12,而12对应的幂4096,因此根据此表,推算( )

x

1

2

3

4

5

6

7

8

9

10

2

4

8

16

32

64

128

256

512

1024

x

11

12

13

14

15

16

17

18

19

20

2048

4096

8192

16384

32768

65536

131072

262144

524288

1048576

x

21

22

23

24

25

2097152

4194304

8388608

16777216

33554432

A. 524288 B. 8388608 C. 16777216 D. 33554432

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

上的最大值为M,最小值为m

,求a的取值范围;

证明:

上恒成立,求a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设常数a≥0,函数f(x)=
(1)若a=4,求函数y=f(x)的反函数y=f1(x);
(2)根据a的不同取值,讨论函数y=f(x)的奇偶性,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经统计某射击运动员随机命中的概率可视为,为估计该运动员射击4次恰好命中3次的概率,现采用随机模拟的方法,先由计算机产生0到9之间取整数的随机数,用0,1,2 没有击中,用3,4,5,6,7,8,9 表示击中,以 4个随机数为一组, 代表射击4次的结果,经随机模拟产生了20组随机数:

7525,0293,7140,9857,0347,4373,8638,7815,1417,5550

0371,6233,2616,8045,6011,3661,9597,7424,7610,4281

根据以上数据,则可估计该运动员射击4次恰好命中3次的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2个、3个、4个,乙袋中红色、黑色、白色小球的个数均为3个,某人用左右手分别从甲、乙两袋中取球.
(1)若左右手各取一球,问两只手中所取的球颜色不同的概率是多少?
(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记两次取球的成功取法次数为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记max{a,b}= ,设M=max{|x﹣y2+4|,|2y2﹣x+8|},若对一切实数x,y,M≥m2﹣2m都成立,则实数m的取值范围是

查看答案和解析>>

同步练习册答案