精英家教网 > 高中数学 > 题目详情
5.数列5,9,13,…的一个通项公式为(  )
A.an=5+4nB.an=5-4nC.an=1+4nD.an=1-4n

分析 由数列的前几项判断数列是一个等差数列,进行求解即可.

解答 解:法1:∵9=5+4,13=9+4=5+2×4,

∴an=5+4(n-1)=1+4n,
法2:(公式法)∵9-5=4,13-9=4,
∴数列是一个以5为首项,4为公差的等差数列,则an=5+4(n-1)=1+4n,
故选:C

点评 本题主要考查数列通项公式的求解,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.在△ABC中,内角A、B、C所对的边为a、b、c.已知sinB=bsinA.
(1)求边a;
(2)若A=$\frac{π}{3}$,求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此做了4次试验,得到数据如下:
零件的个数x(个)2345
加工的时间y(小时)2.5344.5
(Ⅰ)在给定的坐标系中画出表中数据的散点图;
(Ⅱ)求y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(Ⅲ)试预测加工10个零件需要的时间.
参考公式:$\left\{\begin{array}{l}{\widehat{b}=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}}\\{\widehat{a}=\overline{y}-\widehat{b}\overline{x}}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某种产品的两种原料相继提价,因此,产品生产者决定根据这两种原料提价的百分比,对产品分两次提价,现在有三种提价方案:
方案甲:第一次提价p%,第二次提价q%;
方案乙:第一次提价q%,第二次提价p%;
方案丙:第一次提价$\frac{p+q}{2}$%,第二次提价$\frac{p+q}{2}$%.
其中p>q>0,比较上述三种方案,哪一种提价少?哪一钟提价多?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=-$\sqrt{3}$sin2x+sinxcosx+$\frac{{\sqrt{3}}}{2}$,x∈[0,$\frac{π}{2}$]
(1)求函数f(x)的值域;  
(2)若f($\frac{α}{2}$)=$\frac{1}{4}$,α∈(0,π),求sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.解不等式
(1)-2x2>3x-9
(2)x(9-x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.一梯形的直观图是一个如图所示的等腰梯形,且该梯形的面积为2,则原梯形的面积为(  )
A.2B.$\sqrt{2}$C.2$\sqrt{2}$D.4$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知点P(x,y)的坐标满足条件$\left\{\begin{array}{l}{x+y≤4}\\{y≥x}\\{x≥1}\end{array}\right.$  则x2+y2的最大值为10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.化简:$\frac{sin(α-β)}{sinαsinβ}$+$\frac{sin(β-θ)}{sinβsinθ}$+$\frac{sin(θ-α)}{sinθsinα}$.

查看答案和解析>>

同步练习册答案