精英家教网 > 高中数学 > 题目详情
已知y=f(x)是定义在R上的奇函数,且当x≥0时,f(x)=-
1
4x
+
1
2x
,则此函数的值域为______.
设t=
1
2x
,当x≥0时,2x≥1,∴0<t≤1,
f(t)=-t2+t=-(t-
1
2
)
2
+
1
4

∴0≤f(t)≤
1
4

故当x≥0时,f(x)∈[0,
1
4
];
∵y=f(x)是定义在R上的奇函数,∴当x≤0时,f(x)∈[-
1
4
,0];
故函数的值域时[-
1
4
1
4
].
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

永泰青云山特产经营店销售某种品牌蜜饯,蜜饯每盒进价为8元,预计这种蜜饯以每盒20元的价格销售时该店一天可销售20盒,经过市场调研发现每盒蜜饯的销售价格在每盒20元的基础上每减少一元则增加销售4盒,每增加一元则减少销售1盒,现设每盒蜜饯的销售价格为x元.
(1)写出该特产店一天内销售这种蜜饯所获得的利润y(元)与每盒蜜饯的销售价格x的函数关系式;
(2)当每盒蜜饯销售价格x为多少时,该特产店一天内利润y(元)最大,并求出这个最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数f(x)=a2x-180+2012(a>0且a≠1)的图象恒过定点______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若a>1,b<-1则函数y=ax+b的图象必不经过(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=a-
2
2x+1
(x∈R),a为实数
(1)试用单调性定义证明对任意实数a,f(x)在其定义域上为增函数;
(2)试确定a的值,使f(x)为奇函数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设a=lg e,b=(lg e)2,c=lg,则(  )
A.a>b>cB.a>c>b
C.c>a>bD.c>b>a

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的单调递减区间是          

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,则的最小值为(  ).
A.B.C.D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

计算     

查看答案和解析>>

同步练习册答案