精英家教网 > 高中数学 > 题目详情
若a>1,b<-1则函数y=ax+b的图象必不经过(  )
A.第一象限B.第二象限C.第三象限D.第四象限
∵y=ax+b的图象是由y=ax的图象向下平移了|b|个单位,
又y=ax的图象恒过定点(0,1),
∴y=ax+b的图象恒过定点(0,1+b),
∵a>1,且b<-1
则y=ax+b是R上的单调递增函数,且过点(0,1+b),
∴函数y=ax+b的图象经过第一、三、四象限,
∴函数y=ax+b的图象必不经过第二象限.
故选:B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

2010年上海世博会某国要建一座八边形的展馆区,它的主体造型的平面图是由二个相同的矩形ABCD和EFGH构成的面积为200m2的十字型地域,计划在正方形MNPQ上建一座“观景花坛”,造价为4200元/m2,在四个相同的矩形上(图中阴影部分)铺花岗岩地坪,造价为210元/m2,再在四个空角(如△DQH等)上铺草坪,造价为80元/m2
(1)设总造价为S元,AD长为xm,试建立S与x的函数关系;
(2)当x为何值时,S最小?并求这个最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图半径为2的圆内接等腰梯形ABCD,它的下底AB是⊙O的直径,上底CD的端点在圆周上.
(1)写出这个梯形周长y和腰长x间的函数式,并求出它的定义域;
(2)求出周长y的最大值及相应x的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,某池塘中浮萍蔓延的面积y(m2)与时间t(月)的关系y=at,有以下叙述:
①这个指数函数的底数为2;
②第5个月时,浮萍面积就会超过30m2
③浮萍从4m2蔓延到12m2需要经过1、5个月;
④浮萍每月增加的面积都相等;
⑤若浮萍蔓延到2m2,3m2,6m2所经过的时间分别为t1,t2,t3,则t1+t2=t3
其中正确的序号是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某省每年损失耕地20万亩,每亩耕地价值24000元,为了减少耕地损失,政府决定按耕地价格的t%征收耕地占用税,这样每年的耕地损失可减少
5
2
t万亩,为了既可减少耕地的损失又可保证此项税收一年不少于9000万元,则t应在什么范围内?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

2013年4月20日8点02分四川省雅安市芦山县(北纬30.3度,东经103.0度)
发生7.0级地震,此次地震中,受灾面积大,伤亡惨重,医疗队到达后,都会选择一个合理的位置,使伤员能在最短的时间内得到救治.医疗队首先到达O点,设有四个乡镇,分别位于一个矩形ABCD的四个顶点A,B,C,D,为了救灾及灾后实际重建需要.需要修建三条小路OE、EF和OF,要求O是AB的中点,点E在边BC上,点F在边AD上,AB=50千米,BC=25
3
千米且∠EOF=90°,如图所示.
(1)设∠BOE=α,试将△OEF的周长表示成α的函数关系式,并求出此函数的定义域;
(2)经核算,三条路每千米铺设费用均为400元,试问如何设计才能使铺路的总费用最低?并求出最低总费用.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知y=f(x)是定义在R上的奇函数,且当x≥0时,f(x)=-
1
4x
+
1
2x
,则此函数的值域为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数其中.
(1)已知,求的值;
(2)若在区间恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,且,则(    )
A.0B.C.1D.2

查看答案和解析>>

同步练习册答案