精英家教网 > 高中数学 > 题目详情
10.若函数f(x)=x3-ax2-2ax+a2-1在其定义域内不存在递减区间,则实数a的取值范围是[-6,0].

分析 先求出函数的导数,结合二次函数的性质,得到不等式,解出即可.

解答 解:∵f′(x)=3x2-2ax-2a,
若函数f(x)在其定义域内不存在递减区间,
∴f′(x)的图象不在x轴下方,
∴△=4a2+24a≤0,解得:-6≤x≤0,
故答案为:[-6,0].

点评 本题考查了函数的单调性,考查导数的应用,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.数列{an}中,a1=2,a2=7,an+2是anan+1的个位数字,Sn是{an}的前n项和,则S242-10a6=909.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设单位向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$+$\overrightarrow{b}$|=1,则sin$<\overrightarrow{a},\overrightarrow{b}>$等于(  )
A.$\frac{3}{5}$B.$\frac{1}{3}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数$y=Asin(ωx+φ)+B(A>0,ω>0,|φ|<\frac{π}{2})$在同一个周期上的最高点为(2,2),最低点为(8,-4).
(1)求函数解析式.
(2)求出f(x)的单调递增区间;
(3)指出当f(x)取得最大值和最小值时x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x2-a|x-1|,a>0
(1)当a=1时,求函数f(x)的单调区间;
(2)若区间[1,4]内f(x)>0恒成立,求a的取值范围;
(3)记函数f(x)在区间[0,3]内的最大值,最小值分别为M(a),m(a),求M(a)-m(a)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=loga(1+x)-loga(1-x)(a>0,a≠1).
(Ⅰ)判断f(x)奇偶性,并证明;
(Ⅱ)当0<a<1时,解不等式f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数y=f(x)的图象在点x=5处的切线方程是y=-x+8,则f(5)+f′(5)=(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,直线y=kx分抛物线y=x-x2与x轴所围图形为上下两部分面积比为1:7,则k的值为(  )
A.1B.$\sqrt{2}$-1C.0.5D.0.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.数列{an}的前n项和为Sn,且满足Sn=2an+1,则a5=-16.

查看答案和解析>>

同步练习册答案