精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3+ax2-9x-1;
(Ⅰ)若x=-1是函数f(x)的一个极值点,求:(1)a的值;(2)函数f(x)在区间[-2,5]上的最大值与最小值.
(Ⅱ)是否存在实数a,使f(x)在R上单调递增;若存在,求出a的取值范围;若不存在,说明理由.
分析:(Ⅰ)(1)由f′(x)=3x2+2ax-9和x=-1是函数f(x)的一个极值点,能求出a=-3.
(2)由a=-3,知f′(x)=3x2-6x-9,f(x)=x3-3x2-9x-1,由此能求出函数f(x)在区间[-2,5]上的最大值与最小值.
(Ⅱ)假设存在实数a,使f(x)在R上单调递增,则f′(x)=3x2+2ax-9>0的解集为R,由此能推导出不存在实数a,使f(x)在R上单调递增.
解答:解:(Ⅰ)(1)∵f(x)=x3+ax2-9x-1,
∴f′(x)=3x2+2ax-9,
∵x=-1是函数f(x)的一个极值点,
∴f′(-1)=3-2a-9=0,
解得a=-3.
(2)∵a=-3,∴f′(x)=3x2-6x-9,f(x)=x3-3x2-9x-1,
由f′(x)=3x2-6x-9=0,得x=-1,或x=3.
∵x∈[-2,5],-1∈[-2,5],3∈[-2,5],
f(-2)=-8-12+18-1=-3;
f(-1)=-1-3+9-1=4;
f(3)=27-27-27-1=-28;
f(5)=125-75-45-1=4.
∴函数f(x)在区间[-2,5]上的最大值为4,最小值为-28.
(Ⅱ)假设存在实数a,使f(x)在R上单调递增,
则f′(x)=3x2+2ax-9>0的解集为R,
∴△=4a2+108<0
∵△=4a2+108≥108,
∴△<0不成立.
所以,不存在实数a,使f(x)在R上单调递增.
点评:本题考查导数求函数的极值和最值时的应用,考查函数在R上是增函数的性质的应用,解题时要认真审题,注意等价转化思想、分类讨论思想、函数方程思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案