精英家教网 > 高中数学 > 题目详情
市内电话费是这样规定的,每打一次电话不超过3分钟付电话费0.18元,超过3分钟而不超过6分钟的付电话费0.36元,依次类推,每次打电话分钟应付话费y元,写出函数解析式并画出函数图象.

试题分析:解:由题意可知:
      
  
点评:在高中阶段中,画出函数的图像是解决函数问题的关键。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

作为绍兴市2013年5.1劳动节系列活动之一的花卉展在镜湖湿地公园举行.现有一占地1800平方米的矩形地块,中间三个矩形设计为花圃(如图),种植有不同品种的观赏花卉,周围则均是宽为1米的赏花小径,设花圃占地面积为平方米,矩形一边的长为米(如图所示)

(1)试将表示为的函数;
(2)问应该如何设计矩形地块的边长,使花圃占地面积取得最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数. 若实数a, b满足, 则(    )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数.
(I)当时,求的单调区间;
(II)若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义域为R的函数满足时,时,恒成立,则实数t的取值范围是
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

关于函数,有下列结论:①函数的定义域是(0,+∞);②函数是奇函数;③函数的最小值为-;④当时,函数是增函数;当时,函数是减函数.
其中正确结论的序号是         .(写出所有你认为正确的结论的序号)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列所示的四幅图中,可表示为y=f(x)的图像的只可能是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

定义在上的偶函数满足,且在上是增函数,下面关于的判断:
关于点P()对称         ②的图像关于直线对称;
在[0,1]上是增函数;       ④.
其中正确的判断是_________(把你认为正确的序号都填上)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(I)当a=3时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(II)对任意b>0,f(x)在区间[b-lnb,+∞)上是增函数,求实数a的取值范围.

查看答案和解析>>

同步练习册答案