精英家教网 > 高中数学 > 题目详情
已知函数y=sin2x+2sinxsin(
π
2
-x)+3sin2(
2
-x)

(1)若tanx=
1
2
,求y的值;
(2)若x∈[0,
π
2
]
,求y的值域.
分析:(1)由题意,由于已知tanx=
1
2
,故可先由诱导公式对函数进行化简,再由商数关系将函数变为关于tanx的代数式,将正切值代入计算求y值;
(2)由题意,可先对函数解析式进行化简,由三角恒等变换公式可将函数式变为y=2+
2
sin(2x+
π
4
)
,再根据x∈[0,
π
2
]
易求得函数的值域.
解答:解:(1)y=sin2x+2sinxsin(
π
2
-x)+3sin2(
2
-x)

=sin2x+2sinxcosx+3cos2x
=
sin2x+2sinxcosx+3cos2x
sin2x+cos2x

=
tan2x+2tanx+3
tan2x+1

tanx=
1
2

∴y=
1
4
+1+3
1
4
+1
=
17
5

(2)由(1)y=sin2x+2sinxsin(
π
2
-x)+3sin2(
2
-x)

=sin2x+2sinxcosx+3cos2x
=2+sin2x+cos2x=2+
2
sin(2x+
π
4
)

由于x∈[0,
π
2
]
,所以2x+
π
4
∈[
π
4
4
]

所以sin(2x+
π
4
)∈[-
2
2
,1]

∴y的值域是[1,2+
2
]
点评:本题考查三角恒等变换的应用,考查了两角和的正弦函数,正、余弦的二倍角公式,同角三角函数的基本关系,正弦型复合函数的值域的求法,本题涉及到的公式较多,体现了三角函数做题的特点,公式多,变形灵活,解题的关键是灵活运用三角函数公式进行化简变形,然后再求值或求值域,本题考查了转化的思想及运用公式进行计算的能力,是三角函数中有一定难度的题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=loga(x-1)+3(a>0且a≠1)的图象恒过定点P,若角α的终边经过点P,则sin2α-sin2α的值等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=loga(x-1)+3(a>0且a≠1)的图象恒过点P,若角α的终边经过点P,则cos2α-sin2α的值等于
-
8
13
-
8
13

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x),f(x)图象上每个点的纵坐标保持不变,将横坐标伸长到原来的2倍,然后再将整个图象沿x轴向左平移个单位,得到的曲线与y=sinx图象相同,则y=f(x)的函数表达式为(    )

A.y=sin(-)                     B.y=sin2(x+

C.y=sin(+)                     D.y=sin(2x-

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数y=loga(x-1)+3(a>0且a≠1)的图象恒过定点P,若角α的终边经过点P,则sin2α-sin2α的值等于(  )
A.
3
13
B.
5
13
C.-
3
13
D.-
5
13

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河北省衡水市冀州市高三(上)期中数学试卷A(理科)(解析版) 题型:选择题

已知函数y=loga(x-1)+3(a>0且a≠1)的图象恒过定点P,若角α的终边经过点P,则sin2α-sin2α的值等于( )
A.
B.
C.-
D.-

查看答案和解析>>

同步练习册答案