精英家教网 > 高中数学 > 题目详情
18.在底面半径为2母线长为4的圆锥中内接一个高为x的正四棱柱,
(1)用x表示正四棱柱的侧面积;
(2)x为何值时,正四棱柱的侧面积最大?

分析 (1)设四棱柱的底面边长为x,侧棱长为y,可得y=2$\sqrt{3}$-$\frac{\sqrt{6}}{2}$x,由此用x表示正四棱柱的侧面积;
(2)由(1)可得S=-2$\sqrt{6}$(x-$\sqrt{2}$)2+4$\sqrt{6}$,结合二次函数的单调性与最值,可得结论.

解答 解:(1)设四棱柱的底面边长为x,侧棱长为y,则有$\frac{\frac{\sqrt{2}}{2}x}{2}=\frac{\sqrt{16-4}-y}{\sqrt{16-4}}$
则y=2$\sqrt{3}$-$\frac{\sqrt{6}}{2}$x,
∴S=4x×y=4x(2$\sqrt{3}$-$\frac{\sqrt{6}}{2}$x)(0<x<2$\sqrt{2}$)
(2)S=-2$\sqrt{6}$(x-$\sqrt{2}$)2+4$\sqrt{6}$,
则当x=$\sqrt{2}$时,S有最大值.
即四棱柱的侧面积最大时,该四棱柱的底面边长为$\sqrt{2}$.

点评 本题考查了利用几何体的轴截面分析量的等量关系,注意不同量的转化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.侧棱与底面垂直的三棱柱ABC-A1B1C1的所有棱长均为2,则三棱锥B-AB1C的体积为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知命题$p:?x∈R,sinx+cosx≤\sqrt{2}$,命题$q:?{x_0}∈R,{2^{x_0}}<x_0^2$,下列四个命题:p∨(?q),(?p)∧q,(?p)∨(?q),p∧q中真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知α∈(0,$\frac{π}{2}$),cos α=$\frac{\sqrt{3}}{3}$,则cos(α+$\frac{π}{6}$)=$\frac{3-\sqrt{6}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知角θ在第二象限,且$|{sin\frac{θ}{2}}|=-sin\frac{θ}{2}$,则 $\frac{θ}{2}$在(  )
A.第一象限或第三象限B.第二象限或第四象限
C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知$\overrightarrow{a}$=(1,0),|$\overrightarrow{b}$|=$\sqrt{2}$,|$\overrightarrow{a}$-$\overrightarrow{b}$|=|$\overrightarrow{a}$|,则$\overrightarrow{a}$,$\overrightarrow{b}$的夹角是(  )
A.$\frac{π}{2}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,四棱锥P-ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上.
(Ⅰ)求证:平面AEC⊥平面PDB;
(Ⅱ)若PD=$\sqrt{2}$AB=$\sqrt{2}$,且三棱锥P-ACE的体积为$\frac{\sqrt{2}}{12}$,求AE与平面PDB所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数y=f(x)的图象如图,则${f^'}({x_A})与{f^'}({x_B})$的关系是:(  )
A.${f^'}({x_A})>{f^'}({x_B})$B.${f^'}({x_A})<{f^'}({x_B})$C.${f^'}({x_A})={f^'}({x_B})$D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.实数x,y满足$\left\{\begin{array}{l}x+y≥1\\ x-y≥-1\\ 2x-y≤2\end{array}\right.$则z=4x+3y的最大值为24.

查看答案和解析>>

同步练习册答案