精英家教网 > 高中数学 > 题目详情

在△ABC中,角A、B、C的对边分别为a、b、c,且满足(2a-c)cosB=bcosC.
(I)求角B的大小;
(II)设向量数学公式=(sinA,cos2A),数学公式=(2cosA,1),f(A)=数学公式数学公式,求f(A)取得最大值和最小值时A的值.

解:(I)由正弦定理得;(2a-c)cosB=bcosC?(2sinA-sinC)cosB=sinBcosC
?2sinAcosB=sin(B+C)=sinA
∴cosB=,又B∈(0,π)
∴B=
(II)f(A)==2sinAcosA+cos2A=sin2A+cos2A=sin(2A+
由(I)知,0<A<,∴<2A+
∴2A+=即A=时,f(A)取最大值
2A+=即A=时,f(A)取最小值-
分析:(I)先利用正弦定理将(2a-c)cosB=bcosC中的边化为角,再利用两角和的正弦公式将三角函数式化简即可得cosB=,从而由角B的范围得B值
(II)先利用向量数量积运算性质,求得函数f(A)的解析式,再利用二倍角公式和两角和的正弦公式将函数化为y=Asin(ωx+φ)型函数,利用角A的范围,求得f(A)取得最大值和最小值时A的值
点评:本题主要考查了正弦定理得应用,利用三角变换公式化简和求值的能力,y=Asin(ωx+φ)型函数的性质应用,属中档题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,则下列关系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别是a,b,c,且bsinA=
3
acosB

(1)求角B的大小;
(2)若a=4,c=3,D为BC的中点,求△ABC的面积及AD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c并且满足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对边的长分别为a,b,c,且a=
5
,b=3,sinC=2sinA
,则sinA=
 

查看答案和解析>>

同步练习册答案