如图,正三角形ABC的边长为2,D,E,F分别在三边AB,BC和CA上,且D为AB的中点,,,.
(1)当时,求的大小;
(2)求的面积S的最小值及使得S取最小值时的值.
(1)θ=60°;(2)当θ=45°时,S取最小值.
解析试题分析:本题主要考查正弦定理、直角三角形中正切的定义、两角和的正弦公式、倍角公式、三角形面积公式等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,在中,,①,而在中,利用正弦定理,用表示DE,在中,利用正弦定理,用表示DF,代入到①式中,再利用两角和的正弦公式展开,解出,利用特殊角的三角函数值求角;第二问,将第一问得到的DF和DE代入到三角形面积公式中,利用两角和的正弦公式和倍角公式化简表达式,利用正弦函数的有界性确定S的最小值.
在△BDE中,由正弦定理得,
在△ADF中,由正弦定理得. 4分
由tan∠DEF=,得,整理得,
所以θ=60°. 6分
(2)S=DE·DF=
. 10分
当θ=45°时,S取最小值. 12分
考点:正弦定理、直角三角形中正切的定义、两角和的正弦公式、倍角公式、三角形面积公式.
科目:高中数学 来源: 题型:解答题
已知△ABC中,内角A,B,C的对边分别为a,b,c,其中a=2,c=.
(1)若sinC=,求sinA的值;
(2)设f(C)=sinCcosC-cos2C,求f(C)的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,、是两个小区所在地,、到一条公路的垂直距离分别为,,两端之间的距离为.
(1)某移动公司将在之间找一点,在处建造一个信号塔,使得对、的张角与对、的张角相等,试确定点的位置.
(2)环保部门将在之间找一点,在处建造一个垃圾处理厂,使得对、所张角最大,试确定点的位置.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(2013·重庆高考)在△ABC中,内角A,B,C的对边分别是a,b,c,且a2=b2+c2+ab.
(1)求A.
(2)设a=,S为△ABC的面积,求S+3cosBcosC的最大值,并指出此时B的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com