如图,、是两个小区所在地,、到一条公路的垂直距离分别为,,两端之间的距离为.
(1)某移动公司将在之间找一点,在处建造一个信号塔,使得对、的张角与对、的张角相等,试确定点的位置.
(2)环保部门将在之间找一点,在处建造一个垃圾处理厂,使得对、所张角最大,试确定点的位置.
(1);(2).
解析试题分析:(1)设?,我们只要利用已知列出关于的方程即可,而这个方程就是在两个三角形中利用正切的定义,,,因此有,解之得;实际上本题可用相似形知识求解,,则,由引开出方程解出;(2)要使得最大,可通过求,因为
,只要设,则都可用表示出来,从而把问题转化为求函数的最值,同(1)可得,这里我们用换元法求最值,令,则有,注意到,可取负数,即为钝角,因此在取负值中的最小值时,取最大值.
(1)设,,.
依题意有,. 3分
由,得,解得,故点应选在距点2处. 6分
(2)设,,.
依题意有,,
10分
令,由,得,,
12分
,,
当,所张的角为钝角,最大角当,即时取得,故点应选在距点处. 14分
考点:(1)角相等的应用与列方程解应用题;(2)角与函数的最大值.
科目:高中数学 来源: 题型:解答题
如图,正三角形ABC的边长为2,D,E,F分别在三边AB,BC和CA上,且D为AB的中点,,,.
(1)当时,求的大小;
(2)求的面积S的最小值及使得S取最小值时的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(2011•浙江)在△ABC中,角A,B,C,所对的边分别为a,b,c.已知sinA+sinC=psinB(p∈R).且ac=b2.
(1)当p=,b=1时,求a,c的值;
(2)若角B为锐角,求p的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(2013•湖北)在△ABC中,角A,B,C对应的边分别是a,b,c,已知cos2A﹣3cos(B+C)=1.
(1)求角A的大小;
(2)若△ABC的面积S=5,b=5,求sinBsinC的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com