精英家教网 > 高中数学 > 题目详情
已知数列{an}是递增数列,an=n2+λn,求实数λ的取值范围.
考点:数列的函数特性
专题:点列、递归数列与数学归纳法
分析:根据所给的数列的项,写出数列的第n+1项,根据数列是一个递增数列,把所给的两项做差,得到不等式,根据恒成立得到结果
解答: 解:∵an=n2+λn,
∴an+1=(n+1)2+λ(n+1)
∵数列{an}是递增数列,
∴an+1>an
则(n+1)2+λ(n+1)-n2-λn>0
即2n+1+λ>0
∴λ>-2n-1
∵对于任意正整数都成立,
∴λ>-3
故实数λ的取值范围是(-3,+∞)
点评:本题考查数列的函数的特性,本题解题的关键根据数列递增得到an+1>an
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,已知a2-b2=c(a-c),则角B=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=f(x)的解析式由下列程序确定.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为R,任意x,y∈R都有f(x+y)=f(x)f(y),且当x≥0时f(x)≥1,解不等式f(x)<
1
f(x+1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列{an}的前n项和为Sn
Sn
1
4
与(an+1)2的等比中项.
(1)求a1,a2,a3
(2)求证:数列{an}是等差数列;
(3)对于正整数m,bm是使得不等式an≥m成立的所有n中的最小值,求数列{bn}的前2m项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=4cos2x+4
3
sinxcosx-1,x∈R.
(1)求函数的最小正周期、最大值及取最大值时自变量的取值集合;
(2)在△ABC中,角A,B,C的对边分别是a,b,c;若a,b,c成等比数列,且c=2a,求f(B-
π
12
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2-3x+2=0},B={x|x2-ax+a-1=0},C={x|x2-bx-2=0},若A∪B=A,A∩C=C,求实数a、b的值(或取值范围).

查看答案和解析>>

科目:高中数学 来源: 题型:

某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的一年收益与投资额成正比,其关系如图(1);投资股票等风险型产品的一年收益与投资额的算术平方根成正比,其关系如图(2).(注:收益与投资额单位:万元)

(Ⅰ)分别写出两种产品的一年收益与投资额的函数关系;
(Ⅱ)该家庭现有20万元资金,全部用于理财投资,问:怎么分配资金能使一年的投资获得最大收益,其最大收益是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

观察下列各等式(i为虚数单位):
(cos1+isin1)(cos2+isin2)=cos3+isin3;
(cos3+isin3)(cos5+isin5)=cos8+isin8;
(cos4+isin4)(cos7+isin7)=cos11+isin11;
(cos6+isin6)(cos6+isin6)=cos12+isin12.
记f(x)=cosx+isinx.
(1)猜想出一个用 f(x),f(y),f(x+y)表示的反映一般规律的等式,并证明其正确性;
(2)根据(1)的结论推出f n(x)的表达式;
(3)利用上述结论计算:(cos
π
12
+isin
π
12
)•(cos
12
+isin
12
)+(
3
2
+
1
2
i)2007

查看答案和解析>>

同步练习册答案