精英家教网 > 高中数学 > 题目详情
10.在等差数列{an}中,若a3+a5+a7=15,则该数列的前9项和为(  )
A.36B.15C.45D.24

分析 利用等差数列的通项公式及其求和公式与性质即可得出.

解答 解:由等差数列的性质可得:a3+a5+a7=15=3a5
解得a5=5.
则该数列的前9项和=$\frac{9({a}_{1}+{a}_{9})}{2}$=9a5=45.
故选:C.

点评 本题考查了等差数列的通项公式及其求和公式与性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.二项式(a+2b)n展开式中的第二项系数是8,则它的第三项的二项式系数为(  )
A.24B.18C.6D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若sinα=-$\frac{3}{5}$,α是第四象限角,则cos($\frac{π}{4}$+α)的值是(  )
A.$\frac{4}{5}$B.$\frac{7\sqrt{2}}{10}$C.$\frac{\sqrt{2}}{10}$D.$\frac{1}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=$\sqrt{2x+5}$的定义域是[-$\frac{5}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若f(x)=|-x2+(m-1)x+3-m|在[-1,0]上是减函数,则m的取值范围是[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知△ABC是等边三角形,AB=AC=BC=3,点D,E分别是边AB,AC上的点,且满足$\frac{AD}{DB}$=$\frac{CE}{EA}$=$\frac{1}{2}$,将△ADE沿DE折起到△A1DE的位置,并使得平面A1DE⊥平面BCED
(Ⅰ)求证:A1D⊥EC;
(Ⅱ)求点E到平面A1DC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设数列{an}的前n项和为Sn,2Sn=an+1-2n+1+1,n∈N*,且a1,a2+5,a3成等差数列.
(1)证明$\left\{{\frac{a_n}{2^n}+1}\right\}$为等比数列,并求数列{an}的通项;
(2)设bn=log3(an+2n),且Tn=$\frac{1}{{{b_1}{b_2}}}+\frac{1}{{{b_2}{b_3}}}+{\frac{1}{{{b_3}b}}_4}+…+\frac{1}{{{b_n}{b_{n+1}}}}$,证明Tn<1.
(3)在(2)小问的条件下,若对任意的n∈N*,不等式bn(1+n)-λn(bn+2)-6<0恒成立,试求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知圆C的方程为x2+y2-2x+4y-20=0,则其圆C和半径r分别为(  )
A.C(1,-2),r=5B.C(-1,-2),r=5C.C(1,2),r=25D.C(1,-2),r=25

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=|x-2|-|x+3|
(1)求不等式f(x)<3的解集;
(2)若不等式f(x)<3+a对任意x∈R恒成立,求实数a的取值.

查看答案和解析>>

同步练习册答案