精英家教网 > 高中数学 > 题目详情
(本题满分14分) 如图,垂直平面,点上,且
(Ⅰ)求证:
(Ⅱ)若二面角的大小为,求的值.
见解析
解:(Ⅰ)过E点作EFAB与点F,连AF,于是EF//DC

所以EFABC,又BCABC,所以EFBC;
,AC=1/2BC,所以 ,所以
,所以
,所以相似,所以,即AFBC;又AFEF=F,于是BCAEF,又AEAFE,
所以BCAE.                           ……6′
(2)解法一(空间向量法)
如右图,以F为原点,FA为x轴,FC为y轴,FE为z轴,建立空间直角坐标系,则,于是,,

,设平面ABE的法向量为,于是,令Z1=1,得,得.
设平面ACE的法向量为,
,于是,令Z2=1,得,得.
……8′
思路分析:第一问中利用线面垂直 的判定定理和性质定理求证即可。
第二问中,如右图,以F为原点,FA为x轴,FC为y轴,FE为z轴,建立空间直角坐标系,则,于是,,建立空间直角坐标系,然后表示平面的法向量的夹角得到k的值。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知四棱锥的底面ABCD为正方形,平面ABCD,E、F分别是BC,PC的中点,
(1)求证:平面
(2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如下图(图1)等腰梯形上一点,且,沿着折叠使得二面角的二面角,连结,在上取一点使得,连结得到如下图(图2)的一个几何体.
(Ⅰ)求证:平面平面
(Ⅱ)设,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,圆柱的高为2,底面半径为,AE、DF是圆柱的两条母线,过作圆柱的截面交下底面于.
(1)求证:
(2)若四边形ABCD是正方形,求证
(3)在(2)的条件下,求二面角A-BC-E的平面角的一个三角函数值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示的长方体中,底面是边长为的正方形,的交点,是线段的中点.
(Ⅰ)求证:平面
(Ⅱ)求证:平面
(Ⅲ)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知正三棱柱中,.,M为CC1的中点,则直线BM与平面所成角的正弦值是_________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,正方体.则下列四个命题

在直线上运动时,三棱锥的体积不变;
在直线上运动时,直线与平面所成的角的大小不变;
在直线上运动时,二面角的大小不变;
是平面上到点距离相等的点,则点的轨迹是直线
其中真命题的编号是_____________

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

P、A、B、C是球面O上的四个点,PA、PB、PC两两垂直,且PA =" PB=" PC = 1,则球的表面积为     .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,是直三棱柱,,点分别是的中点,若,则所成角的余弦值为            

查看答案和解析>>

同步练习册答案