精英家教网 > 高中数学 > 题目详情
设函数f(x)=sin(ωx+φ)(ω>0,-
π
12
<φ<
π
2
),给出以下四个论断:
①f(x)的周期为π; ②f(x)在区间(-
π
6
,0)上是增函数;
③f(x)的图象关于点(
π
3
,0)对称;④f(x)的图象关于直线x=
π
12
对称.
以其中两个论断作为条件,另两个论断作为结论,写出你认为正确的一个命题:
 
 
(只需将命题的序号填在横线上).
分析:若 ①f(x)的周期为π,则 函数f(x)=sin(2x+φ),若再由 ④,可得∅=
π
3
,f(x)=sin(2x+
π
3
),显然能推出
②③成立.
解答:解:若 ①f(x)的周期为π,则ω=2,函数f(x)=sin(2x+φ).
若再由 ④f(x)的图象关于直线x=
π
12
对称,则sin(2×
π
12
+∅) 取最值,又-
π
12
<φ<
π
2

∴2×
π
12
+∅=
π
2
,∴∅=
π
3
.  此时,f(x)=sin(2x+
π
3
),②③成立,
故由①④可以推出 ②③成立.
故答案为:①④,②③.
点评:本题考查正弦函数的对称性,三角函数的周期性与求法,确定出函数的解析式,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=sin(2x+φ)(-π<φ<0),y=f(x)的图象过点(
π8
,-1).
(1)求φ;  
(2)求函数y=f(x)的周期和单调增区间;
(3)在给定的坐标系上画出函数y=f(x)在区间,[0,π]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(2π+?)(-π<?<0),y=f(x)图象的一条对称轴是直线x=
π8

(Ⅰ)求?;
(Ⅱ)求函数y=f(x)的单调增区间;
(Ⅲ)证明直线5x-2y+c=0与函数y=f(x)的图象不相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(2x+φ)(-π<φ<0),y=f(x)图象的一条对称轴是直线x=
π8

(1)求φ;
(2)怎样由函数y=sin x的图象变换得到函数f(x)的图象,试叙述这一过程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f (x)=sin(2x+
π
3
)+
3
3
sin2x-
3
3
cos2x

(1)求f(x)的最小正周期及其图象的对称轴方程;
(2)将函数f(x)的图象向右平移
π
3
个单位长度,得到函数g(x)的图象,求g (x)在区间[-
π
6
π
3
]
上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(ωx+φ)(ω>0,-
π
2
<?<
π
2
),给出以下四个论断:
①它的图象关于直线x=
π
12
对称;        
②它的周期为π;
③它的图象关于点(
π
3
,0)对称;      
④在区间[-
π
6
,0]上是增函数.
以其中两个论断作为条件,余下两个论断作为结论,写出你认为正确的两个命题:
(1)
①③⇒②④
①③⇒②④
; (2)
①②⇒③④
①②⇒③④

查看答案和解析>>

同步练习册答案