精英家教网 > 高中数学 > 题目详情
定义某种运算?,a?b的运算原理如图所示,设f(x)=(0?x)x-(2?x).f(2)=
 

考点:程序框图
专题:图表型
分析:通过程序框图判断出S=a?b的解析式,再求出f(x)的解析式,从而求出f(x)的解析式,最后令x=2即可.
解答: 解:∵由流程图可知,运算S=a?b中S的值等于分段函数
S=
|b|,a≥b
|a|,a<b
的函数值,
∵f(x)=(0?x)x-(2?x),
∴f(2)=(0?2)×2-(2?2)=0×2-2=-2.
故答案为:-2.
点评:本题考查选择结构,主要考查了判断程序框图的功能即判断出新运算法则,利用运算法则求值.解决新定义题关键是理解题中给的新定义.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若ax2+4ax+3≥0恒成立,a的取值范围是(  )
A、(0,
3
4
]
B、(0,
3
4
C、[0,
3
4
]
D、[0,
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°
.M是PD的中点.
(1)证明PB∥平面MAC;
(2)证明平面PAB⊥平面ABCD;
(3)求直线PC与平面PAD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足x2+y2=1,则
y+2
x+1
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={(x,y)||x|≤2,|y|≤2,x,y∈Z},集合B={(x,y)|(x-2)2+(y-2)2≤4,x,y∈Z},在集合A中任取一个元素p,则p∈B的概率是(  )
A、
2
5
B、
3
5
C、
6
25
D、
4
25

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C的方程是:x2+y2=4,P是圆C上任意一点,过点P作PD⊥x轴于点D,M为PD的中点.
(1)求点M的轨迹E的方程;
(2)若直线l与轨迹E交于A(x1,y1),B(x2,y2)两点,已知
m
=(x1,2y1),
n
=(x2,2y2)
,若
m
n
.试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

集合A={x∈R|0<x≤2},B={x∈R|x2-x-2>0},则A∩(CRB)=(  )
A、(-1,2)
B、[-1,2]
C、(0,2)
D、(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

对数列{an}和{bn},若对任意正整数n,恒有bn≤an,则称数列{bn}是数列{an}的“下界数列”.
(1)设数列an=2n+1,请写出一个公比不为1的等比数列{bn},使数列{bn}是数列{an}的“下界数列”;
(2)设数列an=2n2-3n+10,bn=
n+2
2n-7
,求证数列{bn}是数列{an}的“下界数列”;
(3)设数列an=
1
n2
bn=
7,n=1
7
n
-
7
n-1
,n≥2
,n∈N*,构造Tn=(1-a2)(1-a3)…(1-an),Pn=(1+b1)+(1+b2)+…+(1+bn),求使Tn≤kPn对n≥2,n∈N*恒成立的k的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

多项式1-a2-b2+2ab分解因式的结果是(  )
A、(1-a-b)(1+a+b)
B、(1+a-b)(1-a+b)
C、(a+b+1)(a-b-1)
D、-(a-b+1)(a+b-1)

查看答案和解析>>

同步练习册答案