精英家教网 > 高中数学 > 题目详情
已知f(x)=
1
1+x
(x∈R,且x≠-1),g(x)=x2+2(x∈R).
(1)求f(2)、g(2)的值;
(2)求f[g(3)]的值.
考点:函数的值
专题:函数的性质及应用
分析:利用函数的性质求解.
解答: 解:(1)∵f(x)=
1
1+x
(x∈R,且x≠-1),g(x)=x2+2(x∈R),
∴f(2)=
1
1+2
=
1
3

g(2)=22+2=6.
(2)g(3)=32+2=11,
f[g(3)]=f(11)=
1
1+11
=
1
12
点评:本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求证:△ABC是等边三角形的充要条件是a2+b2+c2=ab+ac+bc.(这里a,b,c是△ABC的三条边)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a∈(0,6),b∈(0,6).
(Ⅰ)求|a-b|≤1的概率;
(Ⅱ)以a,b作为直角三角形两直角边的边长,则斜边长小于6的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知1∈{a,a+1,a2},则实数a的可取值是(  )
A、0B、1
C、-1D、0或1或-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z=(1+i)(2-i)(i为虚数单位),则|z|=(  )
A、
5
B、
2
C、
10
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx,g(x)=ax+b,h(x)=
f(x),(x>0)
g(x),(x≤0)

(Ⅰ)若不等式f(x)≥g′(x)恒成立,讨论方程h(x)=
b
2
的解的个数;
(Ⅱ)当a=-1时,若方程h(x)=
b
2
存在三个不同实数解x1,x2,x3,试比较x1+x2+x3
1
2
1
e
-
1
e3
)的大小并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(x,y),
b
=(x-2,1),设集合P={x|
a
b
},Q={x||
b
|<
5
},当x∈P∩Q时,y的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设等比数列{an}的前n项和为Sn(n∈N*).若S3,S9,S6成等差数列,则 
a8
a2+a5
的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义运算A
 
m
x
=x(x-1)(x-2)…(x-m+1),其中x∈R,m∈N,已知函数f(x)=aA
 
3
x+1
-12A
 
2
x
+1,(a∈R,且a≠0)在x=1处取得极值,且方程f(x)=6x-
16
x
在区间(m,m+1)(m∈N*)内有且只有两两不相等的实数根,则(1)实数a的值为
 
;(2)正整数m的值为
 

查看答案和解析>>

同步练习册答案