精英家教网 > 高中数学 > 题目详情
12.已知A(-1,2),B(2,m).且直线AB的倾斜角α是钝角,则m取值范围是m<2.

分析 由直线的倾斜角α为钝角,能得出直线的斜率小于0,解不等式求出实数a的取值范围.

解答 解:∵过点(-1,2),B(2,m)的直线的倾斜角α为钝角,
∴直线的斜率小于0,
即$\frac{m-2}{2+1}$<0,解得m<2,
故答案为:m<2.

点评 本题考查直线的斜率公式及直线的倾斜角与斜率的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.求下列函数的定义域和值域.
(1)y=2x+1
(2)y=$\sqrt{1-{2}^{x}}$
(3)y=2${\;}^{\sqrt{x}}$
(4)y=2${\;}^{{x}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=asinx-bcosx,若f($\frac{π}{4}$+x)=-f($\frac{π}{4}$-x),则函数y=f($\frac{3π}{4}$-2x)的一条对称轴方程是(  )
A.x=$\frac{π}{6}$B.x=$\frac{π}{4}$C.x=-$\frac{3π}{2}$D.x=-$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=($\frac{1}{{3}^{x}-1}$+m)x,且f(x)为偶函数;
(1)求实数m的值;
(2)求该函数f(x)的定义域;
(3)证明:f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知0<x<2.5,则函数y=x2(5-2x)的最大值为$\frac{125}{27}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=loga(1+x)g(x)=loga(1-x),其中a>0且a≠1,h(x)=f(x)-g(x).
(I)若a=3.求出函数F(x)=h(x)-1的零点;
(Ⅱ)解关于x的不等式h(x)≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知奇函数f(x)=$\frac{b-{2}^{x}}{a+{2}^{x+1}}$的定义域为R.
(1)求实数a,b的值;
(2)在函数f(x)的图象上是否存在两个不同点,使得过这两个点的直线与x轴平行,如果存在,求出这两个点的坐标;如果不存在,请说明理由;
(3)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)≤0恒成立,试指出实数k是否存在最大值及最小值,证明你的判断.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知集合A={x|log2x≤2},B={x|y=log2(a-x)},若A⊆B,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.2015年元旦联欢晚会某师生一块做游戏,数学老师制作了六张卡片放在盒子里,卡片上分别写着六个函数:分别写着六个函数:f1(x)=x2+1,f2(x)=x3,f3(x)=$\frac{ln|x|}{x}$,f4(x)=xcosx,f5(x)=|sinx|,f6(x)=3-x.
(1)现在取两张卡片,记事件A为“所得两个函数的奇偶性相同”,求事件A的概率;
(2)从盒中不放回逐一抽取卡片,若取到一张卡片上的函数是奇函数则停止抽取,否则继续进行,记停止时抽取次数为ξ,写出ξ的分布列.

查看答案和解析>>

同步练习册答案