精英家教网 > 高中数学 > 题目详情
若直角坐标平面内A、B两点满足①点A、B都在函数的图象上;②点A、B关于原点对称,则点(A,B)是函数的一个“姊妹点对”。点对(A,B)与(B,A)可看作是同一个“姊妹点对”,已知函数 ,则的“姊妹点对”有(  )
A.0个         B.1个         C.2个          D.3个
C

试题分析:设,则点关于原点的对称点为,于是,即,因为>0,故,则,令,则考虑其根的个数即可,,令,则,所以在(-2,0)单调递增,而,故函数在(-2,0)内先减后增,在区间(-2,0)内只有一个极小值点,又,所以函数在区间(-2,-1)和(-1,0)分别有一个零点,所以函数的“姊妹点对”有两个.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

定义函数阶函数.
(1)求一阶函数的单调区间;
(2)讨论方程的解的个数;
(3)求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知二次函数h(x)=ax2+bx+c(其中c<3),其导函数的图象如图,f(x)=6lnx+h(x)

(1)求f(x)在x=3处的切线斜率;
(2)若f(x)在区间(m,m+)上是单调函数,求实数m的取值范围;
(3)若对任意k∈[-1,1],函数y=kx(x∈(0,6])的图象总在函数y=f(x)图象的上方,求c的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,其中.
(Ⅰ)求函数的单调区间;
(Ⅱ)若直线是曲线的切线,求实数的值;
(Ⅲ)设,求在区间上的最小值.(为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数R,
(1)求函数f(x)的值域;
(2)记函数,若的最小值与无关,求的取值范围;
(3)若,直接写出(不需给出演算步骤)关于的方程的解集

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)当时,求函数的极值;
(2)若函数在定义域内为增函数,求实数m的取值范围;
(3)若的三个顶点在函数的图象上,且分别为的内角A、B、C所对的边。求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数是R上的奇函数,当取得极值.
(I)求的单调区间和极大值
(II)证明对任意不等式恒成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数在点(1,2)处的切线与的图像有三个公共点,则的取值范围是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=+…+(n>2且n∈N﹡)设是函数f(x)的零点的最大值,则下述论断一定错误的是(   )
A.B.=0C.>0D.<0

查看答案和解析>>

同步练习册答案