精英家教网 > 高中数学 > 题目详情

【题目】某企业为节能减排,用9万元购进一台新设备用于生产,第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加3万元,该设备每年生产的收入均为21万元,设该设备使用了n(n∈N*)年后,盈利总额达到最大值(盈利额等于收入减去成本),则n等于(
A.6
B.7
C.8
D.7或8

【答案】B
【解析】解:设该设备第n年的营运费为an万元,则数列{an}是以2为首项,3为公差的等差数列,则an=3n﹣1,
则该设备使用了n年的营运费用总和为Tn= = n2+ n,
设第n年的盈利总额为Sn , 则Sn=21n﹣( n2+ n)﹣9=﹣ n2+ n﹣9,
∴由二次函数的性质可知:n= 时,Sn取得最大值,
∵n∈N*,故当n=7时,Sn取得最大值,
故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】数学上称函数y=kx+b(k,b∈R,k≠0)为线性函数.对于非线性可导函数f(x),在点x0附近一点x的函数值f(x),可以用如下方法求其近似代替值:f(x)≈f(x0)+f'(x0)(x﹣x0).利用这一方法, 的近似代替值(
A.大于m
B.小于m
C.等于m
D.与m的大小关系无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角△ABC中,A,B,C角所对的边分别为a,b,c,且 = sinC.
(1)求∠C;
(2)若 =2,求△ABC面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x﹣1)ex ax2(a∈R).
(1)当a≤1时,求f(x)的单调区间;
(2)当x∈(0,+∞)时,y=f′(x)的图象恒在y=ax3+x﹣(a﹣1)x的图象上方,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}的前n项和Sn=3n2+2n+1.
(1)求{an}的通项公式;
(2)令bn=an2n , 求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,平面A1BC⊥侧面A1ABB1 , 且AA1=AB=2.

(1)求证:AB⊥BC;
(2)若直线AC与平面A1BC所成的角为 ,求锐二面角A﹣A1C﹣B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=alnx+x在区间[2,3]上单调递增,则实数a的取值范围是(
A.[﹣2,+∞)
B.[﹣3,+∞)
C.[0,+∞)
D.(﹣∞,﹣2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】第十三届全运会将在2017年8月在天津举行,组委会在2017年1月对参加接待服务的10名宾馆经理进行为期半月的培训,培训结束,组织了一次培训结业测试,10人考试成绩如下(满分为100分):
75 84 65 90 88 95 78 85 98 82
(1)以成绩的十位为茎个位为叶作出本次结业成绩的茎叶图,并计算平均成绩与成绩中位数 ;
(2)从本次结业成绩在80分以上的人员中选3人,这3人中成绩在90分(含90分)以上的人数为 ,求 的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场进行有奖促销活动,顾客购物每满500元,可选择返回50元现金或参加一次抽奖,抽奖规则如下:从1个装有6个白球、4个红球的箱子中任摸一球,摸到红球就可获得100元现金奖励,假设顾客抽奖的结果相互独立.
(Ⅰ)若顾客选择参加一次抽奖,求他获得100元现金奖励的概率;
(Ⅱ)某顾客已购物1500元,作为商场经理,是希望顾客直接选择返回150元现金,还是选择参加3次抽奖?说明理由;
(Ⅲ)若顾客参加10次抽奖,则最有可能获得多少现金奖励?

查看答案和解析>>

同步练习册答案