精英家教网 > 高中数学 > 题目详情
19.若倾斜角为α的直线l与曲线y=x4相切于点(1,1),则cos2α-sin2α的值为(  )
A.$-\frac{1}{2}$B.1C.$-\frac{3}{5}$D.$-\frac{7}{17}$

分析 由条件利用同角三角函数的基本关系,求得cos2α-sin2α的值.

解答 解:y′=4x3
故y′|x=1=4,
即tanα=4,
则cos2α-sin2α
=$\frac{{cos}^{2}α-2sinαcosα}{{sin}^{2}α{+cos}^{2}α}$
=$\frac{1-2tanα}{{tan}^{2}α+1}$
=$\frac{1-2×4}{16+1}$
=-$\frac{7}{17}$,
故选:D.

点评 本题主要考查同角三角函数的基本关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.设函数f(x)=x2+3x-2,则 $\lim_{△x→0}\frac{{f({1+2△x})-f(1)}}{△x}$=(  )
A.5B.-5C.10D.-10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若不等式a>|x-5|-|x+1|对x∈R恒成立,则实数a的取值范围是(6,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知$\overrightarrow a=({1,λ}),\overrightarrow b=({2,1})$,若向量$2\overrightarrow a+\overrightarrow b$与$\overrightarrow c=({8,6})$共线,则$\overrightarrow a$在$\overrightarrow b$方向上的投影为$\frac{3\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知直线l的参数方程为$\left\{\begin{array}{l}x=4+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t为参数),以坐标原点为极点,x轴的非负半轴为极轴,建立极坐标系,圆C的极坐标方程为ρ=4cosθ,直线l与圆C交于A,B两点.
(1)求圆C的直角坐标方程及弦AB的长;
(2)动点P在圆C上(不与A,B重合),试求△ABP的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在△ABC中,角A,B,C的对边分别为a,b,c,$-\frac{c}{cosB}$是$\frac{b}{cosB}$与$\frac{a}{cosA}$的等差中项且a=8,△ABC的面积为$4\sqrt{3}$,则b+c的值为$4\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=|2x-1|+|x+1|.
(1)求函数f(x)的值域M;
(2)若a∈M,试比较|a-1|+|a+1|,$\frac{3}{2a}$,$\frac{7}{2}-2a$的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点分别为F1、F2,A为椭圆E的右顶点,B,C分别为椭圆E的上、下顶点.线段CF2的延长线与线段AB交于点M,与椭圆E交于点P.
(1)若椭圆的离心率为$\frac{{\sqrt{2}}}{2}$,△PF1C的面积为12,求椭圆E的方程;
(2)设S${\;}_{△CM{F}_{2}}$=λ•S${\;}_{△CP{F}_{1}}$,求实数λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,F1、F2是椭圆C1与双曲线C2的公共焦点,A、B分别是C1、C2在第二、四象限的公共点,若AF1⊥BF1,且∠AF1O=$\frac{π}{3}$,则C1与C2的离心率之和为(  )
A.2$\sqrt{3}$B.4C.2$\sqrt{5}$D.2$\sqrt{6}$

查看答案和解析>>

同步练习册答案