精英家教网 > 高中数学 > 题目详情
4.在△ABC中,角A,B,C的对边分别为a,b,c,$-\frac{c}{cosB}$是$\frac{b}{cosB}$与$\frac{a}{cosA}$的等差中项且a=8,△ABC的面积为$4\sqrt{3}$,则b+c的值为$4\sqrt{5}$.

分析 由等差数列的性质,正弦定理,两角和的正弦函数公式可求sinC=-2sinCcosA,结合sinC≠0,可得cosA=-$\frac{1}{2}$,由余弦定理可得:64=(b+c)2-bc,利用三角形面积公式可求bc=16,联立可得b+c的值.

解答 解:∵由已知可得$\frac{-2c}{cosB}$=$\frac{b}{cosB}+$$\frac{a}{cosA}$,
∴利用正弦定理整理可得:sinAcosB+sinBcosA=-2sinCcosA,
∴sinC=-2sinCcosA,
∵sinC≠0,
∴解得cosA=-$\frac{1}{2}$,A=$\frac{2π}{3}$;
∵a=8,由余弦定理可得:64=b2+c2+bc=(b+c)2-bc,①
∵△ABC的面积为$4\sqrt{3}$=$\frac{1}{2}$bcsinA=$\frac{1}{2}×\frac{\sqrt{3}}{2}$bc,可得:bc=16,②
∴联立①②可得:b+c=4$\sqrt{5}$.
故答案为:4$\sqrt{5}$.

点评 本题主要考查了等差数列的性质,正弦定理,两角和的正弦函数公式,余弦定理,三角形面积公式在解三角形中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知向量$\overrightarrow a=(-2,1),\overrightarrow b=(3,5)$,则$\overrightarrow a-2\overrightarrow b$=(  )
A.(-4,-9)B.(-8,-9)C.(8,11)D.(-5,-6)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\frac{x-2}{{e}^{x}}$.
(1)求函数f(x)的单调区间和极值;
(2)若函数g(x)=f(6-x),求证:当x>3时,f(x)>g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,点C在以AB为直径的圆O上,PA垂直于圆O所在的平面,G为△AOC的重心.
(1)求证:平面OPG⊥平面PAC;
(2)若PA=AB=2AC=2,求二面角A-OP-G的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若倾斜角为α的直线l与曲线y=x4相切于点(1,1),则cos2α-sin2α的值为(  )
A.$-\frac{1}{2}$B.1C.$-\frac{3}{5}$D.$-\frac{7}{17}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的长轴长为2$\sqrt{2}$,且椭圆C与圆M:(x-1)2+y2=$\frac{1}{2}$的公共弦长为$\sqrt{2}$.
(1)求椭圆C的方程.
(2)经过原点作直线l(不与坐标轴重合)交椭圆于A,B两点,AD⊥x轴于点D,点E在椭圆C上,且$({\overrightarrow{AB}-\overrightarrow{EB}})•({\overrightarrow{DB}+\overrightarrow{AD}})=0$,求证:B,D,E三点共线..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知圆C:(x-1)2+y2=16,F(-1,0),M是圆C上的一个动点,线段MF的垂直平分线与线段MC相交于点P.
(Ⅰ)求点P的轨迹方程;
(Ⅱ)记点P的轨迹为C1,A、B是直线x=-2上的两点,满足AF⊥BF,曲线C1与过A,B的两条切线(异于x=-2)交于点Q,求四边形AQBF面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知全集U=R,集合M=$\left\{{x|{{({\frac{1}{3}})}^x}≤1}\right\},N=\left\{{x|-1<x<4}\right\}$,则M∩N=(  )
A.{x|-1<x≤0}B.{x|0≤x<4}C.{1,2,3}D.{0,1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设z=$\frac{10i}{3+i}$,则$\overline{z}$=(  )
A.-1+3iB.-1-3iC.1+3iD.1-3i

查看答案和解析>>

同步练习册答案