精英家教网 > 高中数学 > 题目详情
10.若不等式a>|x-5|-|x+1|对x∈R恒成立,则实数a的取值范围是(6,+∞).

分析 问题转化为a>(|x-5|-|x+1|)max,根据绝对值的性质求出其最大值,从而求出a的范围即可.

解答 解:若不等式a>|x-5|-|x+1|对x∈R恒成立,
即a>(|x-5|-|x+1|)max
而|x-5|-|x+1|≤|x-5-x-1|=6,
故a>6,
故答案为:(6,+∞).

点评 本题考查了绝对值不等式的性质,考查转化思想,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.函数f(x)=lnx+ax(a<0)的单调增区间为$(0,-\frac{1}{a}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知等比数列{an}的前n项和为Sn,a1=$\frac{2}{3}$,且S2+$\frac{1}{2}$a2=1
(1)求数列{an}的通项公式;
(2)记bn=log3$\frac{{{a}_{n}}^{2}}{4}$,求数列{$\frac{1}{{b}_{n}•{b}_{n+1}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.定义在R上的函数f(x)的导函数为f′(x),且f(x)+xf′(x)<xf(x)对x∈R恒成立,则(  )
A.3f(3)>2ef(2)B.3f(3)<2ef(2)C.f(2)>0D.f(-2)>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.执行如图的程序框图,输出y的值是(  )
A.127B.63C.31D.15

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\frac{x-2}{{e}^{x}}$.
(1)求函数f(x)的单调区间和极值;
(2)若函数g(x)=f(6-x),求证:当x>3时,f(x)>g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列函数中,既是偶函数,又在(-∞,0)内单调递增的为(  )
A.y=x4+2xB.y=2|x|C.y=2x-2-xD.$y={log_{\frac{1}{2}}}|x|-1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若倾斜角为α的直线l与曲线y=x4相切于点(1,1),则cos2α-sin2α的值为(  )
A.$-\frac{1}{2}$B.1C.$-\frac{3}{5}$D.$-\frac{7}{17}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知G为△ABC所在平面上一点,且$\overrightarrow{GA}$+$\overrightarrow{GB}$+$\overrightarrow{GC}$=$\overrightarrow 0$,∠A=60°,$\overrightarrow{AB}$•$\overrightarrow{AC}$=2,则|$\overrightarrow{AG}}$|的最小值为$\frac{{2\sqrt{3}}}{3}$.

查看答案和解析>>

同步练习册答案