分析 用$\overrightarrow{AB},\overrightarrow{AC}$表示出$\overrightarrow{AG}$,利用基本不等式得出AB2+AC2的最小值即可.
解答 解:∵$\overrightarrow{GA}$+$\overrightarrow{GB}$+$\overrightarrow{GC}$=$\overrightarrow 0$,∴G是△ABC的重心,
∴$\overrightarrow{AG}$=$\frac{1}{3}$($\overrightarrow{AB}+\overrightarrow{AC}$),
∴${\overrightarrow{AG}}^{2}$=$\frac{1}{9}$($\overrightarrow{AB}$2+$\overrightarrow{AC}$2+2$\overrightarrow{AB}•\overrightarrow{AC}$)=$\frac{1}{9}$(AB2+AC2)+$\frac{4}{9}$,
∵$\overrightarrow{AB}•\overrightarrow{AC}$=$\frac{1}{2}$AB•AC=2,∴AB•AC=4,
∴AB2+AC2≥2AB•AC=8,
∴${\overrightarrow{AG}}^{2}$≥$\frac{8}{9}+\frac{4}{9}$=$\frac{4}{3}$.
∴|$\overrightarrow{AG}$|≥$\frac{2\sqrt{3}}{3}$.
故答案为:$\frac{2\sqrt{3}}{3}$.
点评 本题考查了平面向量的数量积运算,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>b>c>d | B. | b>a>c>d | C. | d>a>b>c | D. | a>d>c>b |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{3}$ | B. | 4 | C. | 2$\sqrt{5}$ | D. | 2$\sqrt{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com