精英家教网 > 高中数学 > 题目详情
1.已知等比数列{an}的前n项和为Sn,a1=$\frac{2}{3}$,且S2+$\frac{1}{2}$a2=1
(1)求数列{an}的通项公式;
(2)记bn=log3$\frac{{{a}_{n}}^{2}}{4}$,求数列{$\frac{1}{{b}_{n}•{b}_{n+1}}$}的前n项和Tn

分析 (1)设等比数列{an}的公比为q,由题意得$\frac{2}{3}$+$\frac{2}{3}$q+$\frac{1}{2}$•$\frac{2}{3}$q=1,解得q,即可得出.
(2)由(1)知:bn=log3$\frac{{{a}_{n}}^{2}}{4}$=log33-2n=-2n,$\frac{1}{{b}_{n}•{b}_{n+1}}$=$\frac{1}{2n•(2n+2)}$=$\frac{1}{4}(\frac{1}{n}-\frac{1}{n+1})$.利用裂项求和方法即可得出.

解答 解:(1)设等比数列{an}的公比为q,由题意得$\frac{2}{3}$+$\frac{2}{3}$q+$\frac{1}{2}$•$\frac{2}{3}$q=1,即q=$\frac{1}{3}$,
因此an=a1•qn-1=$\frac{2}{{3}^{n}}$.
(2)由(1)知:bn=log3$\frac{{{a}_{n}}^{2}}{4}$=log33-2n=-2n,
∴$\frac{1}{{b}_{n}•{b}_{n+1}}$=$\frac{1}{2n•(2n+2)}$=$\frac{1}{4}(\frac{1}{n}-\frac{1}{n+1})$.
∴数列{$\frac{1}{{b}_{n}•{b}_{n+1}}$}的前n项和Tn=$\frac{1}{4}$$[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})]$
=$\frac{1}{4}(1-\frac{1}{n+1})$=$\frac{n}{4n+4}$.

点评 本题考查了数列递推关系、等比数列的通项公式、裂项求和方法、对数运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知向量$\overrightarrow a≠\overrightarrow e$,$|\overrightarrow e|=1$,对任意t∈R,恒有$|\overrightarrow a-t\overrightarrow e|≥|\overrightarrow a-2\overrightarrow e|$,则(  )
A.$\overrightarrow a⊥\overrightarrow e$B.$\overrightarrow a⊥(\overrightarrow a-2\overrightarrow e)$C.$\overrightarrow e⊥(\overrightarrow a-2\overrightarrow e)$D.$(\overrightarrow a+2\overrightarrow e)⊥(\overrightarrow a-2\overrightarrow e)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知复数z=(2+i)m2-$\frac{6m}{1-i}$-2(1-i),当实数m取什么值时,复数z是 
(1)虚数,
(2)纯虚数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设函数f(x)=x2+3x-2,则 $\lim_{△x→0}\frac{{f({1+2△x})-f(1)}}{△x}$=(  )
A.5B.-5C.10D.-10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知$\overrightarrow{e_1},\overrightarrow{e_2}$为非零向量且不共线,若$k\overrightarrow{e_1}+\overrightarrow{e_2}$与$\overrightarrow{e_1}+k\overrightarrow{e_2}$共线,求k=±1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,等边△ABC与直角梯形ABDE所在平面垂直,BD∥AE,AE⊥AB,BC=BD=2AE=2,O为AB的中点.
(1)证明:CO⊥DE;
(2)求二面角C-DE-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在平面直角坐标系中,角α的顶点与原点重合,始边与x轴的非负半轴重合,终边过点P(-$\sqrt{3}$,-1),sin($\frac{π}{2}$-2α)=(  )
A.$\frac{\sqrt{3}}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若不等式a>|x-5|-|x+1|对x∈R恒成立,则实数a的取值范围是(6,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=|2x-1|+|x+1|.
(1)求函数f(x)的值域M;
(2)若a∈M,试比较|a-1|+|a+1|,$\frac{3}{2a}$,$\frac{7}{2}-2a$的大小.

查看答案和解析>>

同步练习册答案